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INTRODUCTION

The distortions of a laser beam produced by density and thermal varia-
tions in a fluid medium have been the subject of many investigations. In
general, such studies on the effects of heat deposition‘from the laser beam
upon the propagation of that-beam can be classified into two groups, depending
upon whether time dependence is considered. Most available experiments are
conveniently undérstood by reference to theoretical studies of the gross
effects of thermal deposition and fluid motion, which assume that a steady
state will be achieved for the deflection and distortion of the laser beam.

On the other hand, several years ago it was shown that one of the solutions

for beam propagation was unstable, in thé sense that small distortions in the

beam would be amplified if the power level was greater than a threshold determined
by the thermal conductivity of the fluid. For the most part, those investiga-
tions that do assume some time dependence for the beam pattern weré concentrated
on studies of the growfh of small amplitude perturbations from an initially

uniform beam.

The work described in this report was motivated by the discovery of
instabilities in the system of equations describing electromagnetic wave
propagation and fluid dynamics. Initially, it appeared desirable to attempt
aﬁ exploratidh of the extended development of the instabilities noted for a
uniform beam. The basic equations are discussed in Part I, and in Part II the
linearized stability analysis is presented along with an evaluation of the
threshold for these growing waves. To follow the growth of the disturbances,
computer studies were undertaken. In the course of these studies it became
apparent that there was some merit to introducing a new concept to judge the

value of an algorithm for computing the solutions of a system of partial

<



differential equations. This concept was called "utility", and is discussed
in Part I1I, along with several examples of its application to simpler partial
differential equations. The advantage of this concept is that it is
relatively easy to apply to complicated systems of partial differential
equations, whereas the stability concept leads to a very complicated procedure
for deciding on the value of a numerical routine. In Part IV are presented
the results of a calculation of beam distortion for a very high intensity
pulse propagating through air for several kilometers. Analytical arguments
are advanced which suggest that the qualitative features of the distortions

are correct, which lends credence to the computer output.

Speed and memory size in a computer place certain restrictions on one's
ability to investigate phenomena in the laser beam problem. In the attempt to
calculate distortions of the type predicted by the 1inearized instability
analysis, cylindrical symmetry was imposed on the problem in order to
facilitate the computer calculation. Had this not been necessary, or had s&me
other independent variable been eliminated rather than the angle about the
beam axis, much more pronounced evidence of beam and fluid instabilities would
1ikely have been observed for substantially lower powers, powers that may be

achievable. Arguments supporting this proposition are contained in Part V.

Part VI of this report contains an analytic discussion of beam bending
and thermal blooming for a slab beam propagating through a wind. A formula
is derived which provides for the transition between two regimes in which
conduction and forced convection, respectively, dominate the dissipation of
heat deposited in the medium from the laser beam. This formula appears to be

useful for the analysis of several experiments.



PART I
BASIC EQUATIONS

When an intense laser beam propagates through a fluid, many interesting
phenomena take place. This laser-fluid system can be described by a macro-
scopic model which involves Maxwell's equations, the Navier-Stoke§ équat1on.
an energy conservation equation, and the continuity equation for fluid motion.
These equations which describe the behavior of intense electromagnetic beams
and the associated sound and thermal fluctuations, are coupled by stimulated
Raman scattering, electrostriction, the high frequency Kerr effect, absorption
heating, and the density and temperature dependence of the 41electr1c constant.
In this paper, a systematic discussion is presented for an intense laser beam
propagating through air, which has a negligible Kerr constant. If the
frequencies are outside the Raman scattering range, the instabilities are
primarily caused by optical-accoustic coupling of the laser beam and the gases.
These effects are of long duration compared to those of self-focusing. As the
beam passes through air, the intensity profile induces a nonuniform temperature
gradient transverse to the propagating direction of the beam, due to the energy
absorption from the beam. This thermal non-equilibrium and electrostriction
together cause the generation of a density gradient and hence a sound wave.
These density changes react back on the incident beam through changes in the
dielectric constant. A detailed mathematical description of the model adopted

here will be presented.

Maxwell's equations for the electric field vector Eina charge and
current free region can be employed to yield the wave equation for the

electric field
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C ot
where the permittivity, €, is taken to be
Here and throughout this paper, Heavysidé-Loféntz units are used for electrical
quantities. These units are sometimes called fationalized gaussian units. The
time average in (2) is to be taken over a timé large compared with an optical
period. Many such time averaged terms will be encountered below and in all
cases an average over "several" optical periods is intended. Such average
quantities may, of course, stil11 be functions of time, but will vary s10w1y on

the time scale of an optical period.

For an isotropic medium free of charge, the electric displdcemgnt
vector is parallel to E and is.divergenceless. Under these conditions one,
therefore, has: ,
V. (cE) = 0 _ - (3)
From ( 3) one obtains

+> >
VeE=-E-V(loge).
Substituting this expression in (1) produces

‘ 2,
RE+T (-7 l0g e L 2s) (0
c ot .

Since processes involving acoustical and thermal effects are considered
here, the change in ¢ over an optical wavelength 's small compared with the
changes over a typical acoustical length. Thus the term involving Ve will be

neglected in (4), leaving:

B o
c"’szn:—tz(eE). C(5)
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When processes involving electronic states of the molecules of the fluid are

3 >
important, the Ve term must be retained in the wave equatfon for E.

The permittivity ¢ fs;”in general, a function of the mass density p
of fhe fluid and the temperature T. In fluids (%%)p will be small except for
such large temperatures that there is significant popul;tion of vibrational
modes of the molecules. Hhen anharmonic effects in the vibrational spectrum
become 1mportant. careful attention mus} be given to the dependence of € on T
at constant dens1ty For a considerablb range of density and temperature,
however, (%%) = 0, so that € can be taken to be a function of p only. The
dependence of € on dénﬁity can be approximated by the formulas resulting from

Lorentz-Lorenz local field theory. This approach leads to the formula

-] 2) , 2
(30)1 slesdlfe sy fiq - i~ q) (6)

The second term on the RHS of (6) is usually extremely small because (e - eL),
the nonlinear piece,is small. Furthermore, particularly in gases, (eL - 1) is
extremely small. For the situations considered in the present analysis, both

these factors are small, so that (6) is conveniently simplified to
-1 +
"(ap)T E )3(e & (6a)

This Clausius-Mossotti relation will be used later in the detailed analysis of

the laser-fluid equations.

The equation for the fluid motion, the Navier-Stokes equation, is

- PRI WA 7
P Dt P4 axj ij axj cij )

where 7 is the velocity of a material element of the fluid, 3 is tﬁe gravita-
tional acceleration vector, %3 is the viscosity stress tensor,[ ] ij is the

interaction stress tensor coupling the electromagnetic fiald to the flujd.[zl
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The time derivative ﬁ% is the "material" derivative; i.e., one that follows

the motion of a material "particle" of the medium relative to a fixed coordinate

system. This derivative can be expressed in the form
A .
o SRR A @)
The viscosity stress tensor is given, to a first approximation, by the
linear terms of an;expansion in powers of the viscosity coefficients:

aV v ay
= i ' i =
°ij = n(ﬂ*ﬁ‘})*n -aTk.»ij (9)

where n is the coefficient of shear viscosity and n' is the compressional
viscosity coefficient. Sometimes n and n' are called the "first" and "second"
viscosity coefficients and were previously denoted u and ?., respectively, in

the notation used by Stokes. The coefficient n' is occasionally called the

dilational viscosity coefficient.

The interaction stress tensor for the electromagnetic field and the

fluid will be taken to be

2 ;
A . E - ~[9€
A derivation of this tensor, valid for static electromagnetic fields is given
on page 67 of Reference [2]. In a vacuum, this expression becomes the familiar
Maxwell stress tensor
= 212
This tensor is not strictly correct for optical fields. Expression (10) results

from a derivation with an isothermal constraint. A similar derivation with an

adiabatic constraint, actually an isentropic constraint, gives thé same result,

except that the partial derivative (g%)r at constant temperature is replaced

6



by (%i)_, the derivative at constant entropy. The difference in these two
S

constraints is contained in the thermodynamic relation

o) . (2e) , qfoe) [__1__

39)5 p(ap)T 4 T(aT.)p Y Ay
—Ls- 8T
BVs

where Cp is the specific heat per unit mass at constant pressure, y is the
ratip of specific heat at constant pressure to that at constant volume, B is
4 ' 1 {3V 1 /(3
ermal expansion coefficient ( ) = - —-( ) , and v_ is the isentropic
ﬂ i' V.ET'P Egp .s

P

velocity of sound, %%) .
3 3

The difference tem in (11) is very small for reasons that have already
been discussed, (%%)p z 0. The term in square brackets is roughly % Thus,
for the present purposes, it will suffice to use the "isothermal" stress tensor
given 16 (10). Actually, neither constraint is strictly valid, but corrections
would be small and would necessitate a detailed examination of fluid boundary

layers .and the explicit mechanisms of heat dgposition in the control volume.

fhe preésure P occurring in (10) is the thermodynamic pressure. ‘This
pressure is not identical with the mean pressure, Pm z - %-[o11 +-3:;], but 1is,
rather; the thermodynamjclintensive variable that enters into the equation of
state of the fluid: “
P = P(p,T) ' (12)

Combining equations (7), (9), and (10), one obtains

Y
-> -> -»> -»>
P %% =9 Pt fos * Flisc (13)

' >
where the electrostrictive force density fes is obtained by substituting (10) in
(7):



-» 4
"

2 = Ce % V(eE?) + V[-E:- (g:)T]+ e(E - V) ED
= (- % 52[(%%)T Vo + (%Fr)p'ﬁ] .I,e(g. c V) E+

+%— ( ) Vo + [—:—(g:)_r]-re(E -V)E)
Ezzaej T + g‘v’ EZ_p)

-1V |2, 33 -252% | 4 (14)

Q
m.

NI -

The time averages here are taken over several optical periods and the relation

(3)_. V. (eE) = 0 has been used to get (14):

->
The viscous force density fvisc’ appearing in (13), is obtained by
substituting (9) in (7):

->

fvisc

=nVEV4(n+n)V (Vv (15)
where terms involving Gﬁ and Gﬁ' have been dropped. In other words, n and n'
have been taken to be constant throughout the fluid. This is a good approxima-
tion for gases where n, for example, increases slightly with temperature.
Models, based on the Lennard-Jones potenfial energy function, suggest that

n~ /T . In liquids, on the other hﬁnd. the viscosity decreases rather
strongly with increasing temperature, so that gradients of the viscosity

coefficients could have some small effect.
Putting (14) and (15) in (13), one can write

p-g—-sp'g'-VP-*-z-VlEzpiaoH --}EZVe

PV + ()T (V) (16)



The equation of continuity of matter in the fluid is
BT o) =0 (17)
The general equation for heat transfer in the fluid is
= B ag 1
TRE=0,-9"3 (18a)
where s is the entropy per unit mass in the fluid, ¢n is the viscous dissipation

function, and 3 is the total ehergy flux vector. The flux q can be divided into

several parts:
->

q= acond s arad =) (18b)
where-l-! is a "material" Poynting vector to be discussed below, and acond and
arad are the parts due to conduction and thermal radiation. In particular,

-+ el >
qcond = KV T (18c)

where the thermal conductivity, x, a function of p and T 1is dgfined by this
relation. The thermal radiation flux, arad' can be approximated, for small
temperature differences, by Newton's law of cooling:

Ve Erad =pC,q(T-T) (18d)

where Cv is the heat capacity per unit mass at constant volume, T - To is the
local temperature ‘excess, and q is a radiation coefficient introduced by Stokes.& ]
Because this effect is extremely small in the parameter regime of the present

analysis, this thermal radiation term will be dropped.

The viscous dissipation function, ¢n. appearing in (18a) is given by

av1

¢ = 94y -3—;3- (18e)

Combining (18a), (18b), (18c), and droppina the term shown in (18d), one obtains



pT-ll;—:-=¢n+§;-(|<-V>T)-V°_? (19)
The LHS of (19) can be re-expressed, and the entropy eliminated, by

using the thermodynamic relation

c, (y-1)
DT v D
N R el 3 (20)

where the thermodynamic parameters enteriny here have all been defined above.

o

Actually (20) is obtained only if one neglects the dependence of the state of
the fluid on the electric field. Strictly speaking, the entropy is a function
of p, T, and E. As shown on page 51 of Reference [2], one has the approximate

expression

g2
smsel 5 (%) (21)
(o]

Since -f) is small, as discussed above, it is consistent to drop the very
small swcond term 1n (21) and thus get (20).

Combining (19) and (20), one then gets

C (y - 1)
DT
23 s e

The term V. F in this equation is associated with a model for the absorption

b ' -> b d
Bt +T VT -V.F (22)

of electromagnetic energy by the fluid. A linear absorption coefficient, o,
for the deposition of electromagnetic energy in the fluid is to be introduced.
This coefficient is taken to be independent of the frequency of the electro-
magnetic radiation, so the model will not be valid for frequencies near the
resonance lines of the molecules in he fluid. In this model, the electric

-32
field will be damped by a factor e 2 where z is the direction of propagation

and the energy deposited in the medium is taken to be ac/e E7 -

aPL where PL
is the laser intensity in (ergs/sec)/cm . It is this term that the divergence

of F represents in (22). This "material" Poynting vector Fis understood to

-10-



be the time average
> +
FecFp- Fp (23)

-+ >
where FT éE x B is the total Poynting vector, whereas Fb is the Poynting
vector that would result from the same fields in the absence of absorption.

The time average is taken, as usual, over several optical periods.

In order to be consistent in the introduction of this absorption model,
certain terms should be added to the wave equation and to.thé Navier-Stokes
equation.. Speciffcal]y. the term ac 21!%%1 should*vbe added to the RHS of (5)
and a vector E should be added to the RHS of (16). The counter term E is

given by

z_1 foel o 2
C= p(—) —F (24)
20/t o
This is strictly a counter term whose purpose is to remove the o dependence

from the Navier-Stokes equation. No physical significance is attached to this

term.

Making these modifications and collecting the operative equations. for
convenience, the following set of nonlinear coupled partial differential
equations is obtained for description of the macroscopic representation of

the laser-fluid system.

WAVE EQUATION

2

&% - a—':-z’(el-:) + ac 2 (/&E) (252)
e=¢g *e EE (25b)
p(g_g).r e _= 1)(e + 2 , (.g_%)p =0 (25¢)

—+

Instead of adding this term explicitly, the same effect can be obtained by
considering the permittivity, €, to be complex and frequency dependent.
The present procedure is used to avoid the logical difficulty of putting
frequency dependence in the space-time wave equation.

k=



NAVIER-STOKES EQUATION

> +[ (j] >
p.g{.-p'g'--V.P+%V Eng—g'.r "]2'E2VE+

sV emen)V(7ev)+0
Tl o ¢
o ‘zp(a")T c/e J

HEAT TRANSFER EQUATION

c“(Y‘]) > | -+
pcv%%-—"—-é——%%-%~+v- (KVT)+ac/EEz

ov oV v v ov
£ i i b k i
o e [le e ) o o o 5

FLUID CONTINUITY EQUATION

' %%-+ Ve(v)=0

EQUATION OF STATE
P = P(p,T)

(26a)

(26b)

(27a)

(27b)

(28)

(29)

Due to the complexity of this set of equations, it is not possible to obtain

exact solutions analytically. Only the 1inearized solutions have been

discussed.[4’5] In the next section a linearized analysis of this set of

equations is presented and, in subsequent sections, the nonlinearities will

be considered.

-12-



PART 11
LINEARIZED ANALYSIS

Linearized analysis is a standard pertubation technique. In this
scheme, it is assumed that each of the dependent variables in the problem can
be expressed as the sum of its slowly varying zeroth-order component and a
small first-order correction!sl In this way, a set of linear equations for
small disturbances is obtained. This approach to the analysis of the laser-
fluid system was first investigated by Brueckner and Jorna.[4] In the present
approach, two variables are used to describe the perturbed electromagnetic
field, one for the component of the field which is vibrating in phase with the
primary beam and one for the component out of phase. In this way, the four-
photon coupling induced by periodic fluctuations in the dielectric constant
can be included. This coupling was not included in the original formulation
given by Brueckner and Jorna. The dispersion relation for these linearized
equations has been evaluated and is more complicated in structure than that
presented By Brueckner and Jorna. For propagation through air, however, the
numerical differences are minor. The wave with the largest growth rate,
resulting from resonant interactions between scattered electromagnetic waves
and the thermal wave, propagates almost perpendicularly to the laser beam.

The direction is such that the change in frequency of the scattered electro-

magnetic wave and the frequency of the thermal wave, which is zero, are

approximately the same.

.Aﬁdg;ailgg‘gnglysjs will now be presented. Separating each quantity

into a zeroth-order and a first-order perturbation, one has

-13-



P Pyt 0y (30b)
TRT +T, (30¢)

p 9P vl v

3 = il - s
P~P0+p]( )T+T](-.|r)‘> Py * = 9 + g Bry Ty (30d)

e\ . . (% |
€ “[CL(O) *°135"T”1§rp &
€,y ey 2
+ oo + o, + 168, o + )

= eg0t € | ' (398)

where Pp* To. PO. eL(é)' and €2(0) are taken to be constants describing the
unperturbed medium, Yi is the 1seﬁtrop1c velocity of sound in the unperturbed
medium, y is the ratio of specific heats, B is the coefficient of thermal

expansion for the fluid, and the zeroth and first order dielectric constants

are given by

oe = €L(0) * £2(0) o (30f)
'_ g €y —3 9, __.2. i
i [('5?)0 " (_)o 0 ] g [("r') 'r)o Eq ]
+ 2 £5(9) E(g) Eq) (309)

The ‘ndicated averages are taken over several optical perfods and the subscript
zero on the partial derivatives indicates that they are to be evaluated at the

density and temperature of the unperturbed fluid.

When equations (30) are substituted into (25a) and the zeroth-order and

first-order terms are separated, one gets



2
2 ] "_f_z_uz a ’(’éoe 2
THo T Ty e e
and
i £ 2(c E
22 3. 8 (eoe E(1)) _a 3("*5_5_(51)) " &1 o (31b)
C

1
VeE,qy - .
(" Z7 52 2 at

There would have been an additional small term -V[Eo .V log €] on the RHS of
(31b), had equation (4) not been simplified by dropping Gé to)get (14). Since

a(s,E
a is treated as a first order quantity, a term - ;to was also dropped
ZCJESZ

from the RHS of (31b)

The primary electromagnetic wave is chosen to be a 1inearly polarized
plane wave propagating in the z-direction:
i(wt-k2) -$z
=i L L AT A
E(O) 7€ Epe e +c.C. =
-%z
=& |Egl e cos ('t - kz+s) (32a)

where c.c. stands for "complex conjugate" and & is the phase of the complex

constant, Eo. With

kLc
g (32b)
e
equation (32a) gives a solution of (31a), except for negligibie terms of
order az.

The first order correction E(]) described by (27b) is taken to be of the

form

a
v oy [t -K X+ -ilwt-K cx+e)] TZF
E(]) =38 fe +ge e + C.C.

(33a)

«15-



where f and g are complex amplitudes, § is the phase of the primary beam, and

w, = W tow (33b)
.p— A -> y
ki = kL e, + k- (33c)
O ENE 2
Ky =k Crk r2kg kg - (33d)
It is presumed that
w << W, (3§a)
and that
-»> .
|k| << kL 4 (34b)

~ >
Under this assumption, it follows that e, k+is approximately equal to kL Qne
can easily check, now that the factor
a .
z
: e—z
appearing in (33a) ic consistent with the term containing a in (31b) to a very
-+ >
good approximation. Thus, E(o)‘and E('I) both have the same damping factor

a
2.
e 2

Because of the mathematical complexity, it is convenient to express the

-
first order electric field E(]) in another form. Equation (33a) is rewritten:

o
E(” s gy e 2 ; [E} cosut - kz +8) +Ef sin(wt-kz+s)] (35)

where '
+ <
Ey E(ﬁiﬂ) ellwt = kex) oo .
+> <
= |f + g| cos(wt -k *+ x +¢') (35a)
and

Ell

i '(%a)ei(“t -k ;) + c.c. =

> >
|f - g] cos(wt - k « x + ") (35b)



where ' is the phase of the complex number (f+g) and 8" is the phase of
i(f—g). Since w << W s the amplitudes Ei and E? are slowly varying functions
of time compared with the rapidly varying primary beam.

Using (32a) and (35), the time averages appearing in equations (30f) and
(30g) are easily computed and found to be:

Ez(o) = 1 |gg|% & (36 )
and .
Eio) E1) = % IEol Ej €% = 3 IEg] IF4g] &% cosut - k - X + 6°)
i +
= %-lEOI (F4g) el(0t = k= x) oz, o _ (37)

The first order sound and thermal waves are taken to be

(?1) B %(?-) ellUt - ko x)y o, (38)

+
where p' and T' are complex amplitudes. The frequency w and wave vector k
appearing in (38) are the same as tiiose shown in (33b) and (33c). These waves
+ .
at frequency 1_(m['- wL) are often called thermal Rayleigh waves or Brillouin

waves.

The particle velocity V can be taken to be a first order quantity for
the case where the unperturbed medium is stationary. For this reason and
because the unperturbed 'medium is taken to be uniform, so that 3 Po and 5 T0
are zero, there is no difference in first order between Qéil and the partial
derivative ééil. Thus, all of the material derivatives reduce to ordinary
partial derivatives and there is no distinction between Eulerian and Lagrangian
representations in the first order calculations. The continuity equation (28)

becomes



9p >
-a-tl+pov-v=o (39)

and the Navier-Stokes equation (2ba) becomes

oy X av - In72V + (n +n') V- V)] = -V p] + 2, (e - 1)(5 + 21]
‘?E(o) V€+c
2
Vs o
T[ + Bpg V171 +
*[%°3—§)T$F_2*‘%l%3e]+5 ~. (40)

The Clausius-Mossotti relation (25¢) and equation (30d) have been used to
obtain (40). A e

Now (39) and (40) cah:be combined in such a wdy as to remove vV from the
equations. To accomplish this, (39) is differentiated with respect to time and

the divergence of (40) is taken. The quantity %T'V V=V g% is then

eliminated between the resulting équations to produce:

2
9 p-l ) 2n + n' V2 (391) I Vs
st? P /Y

'V'[%p ) L’,r—l'f(o)"“:"c]

_E 5 1 E%;; v2e - (e - 1)(e + 2) 2

2

2 B M
[V D-ll"' Bpo VT-I] 3

E(o) E(]) - (41)
where the Clausius-Mossotti re]ation has again been used and the extremely small
term, %-(e -1) QEZ Gz . ge.has been dropped along with other second order
terms. The gravity term is also dropped in (41) because it is of no interest in
the present considerations. The counter term € has performed the task for which
it was introduced. The net effect of the term is the instruction that the
Laplacian a;ting on EIB;'EZT; should not act on the damping faétor e %%

-18-.



For convenience, the following notation {s introduced:

2 Ve
-Y— 5 so that (42a)

us= 1sotherma1 speed of sound
in the unperturbed medium

- (ﬁ)T : (aez) e (e:;)e - ])ieoe +2)

T '5-")— L E(O) z%- 3 (42b)
(3¢ de | -
_ (% z) "
B = (—5T-)p + (—aT- - E(O) (42C)
N:= M | ; (424d)
po . ]
In this notation, vee becomes, to first order,

g o ac) # 8 2 " 2
Ve =V [(ap)T Vo + (-51-)0 VT]] AVZp] + BV°T, (43)

and equation (41) becomes ,

2

270y 2(391) 2. 2
-a—tz—- NV 3%/ - u“v " + BpOVZT-l] +

-1 T
+ %2-— [E%; (szp] + BVZT]) + (e,,12)V E(0) (l)]

(44)
To first order, the thermal transfer equation (27a) becomes
aT, C,(y-1) 3p
] v 1 _ 2
pocv 3t o ) Y KVZT] + ac Eoe [E(o) + ZE(O)E(] )] . (45)

Upon substitution of quations (32a), (35), ( 36), ( 37) and (38) into
equations (31b), (44), and (45), the Fourier transform of the set of linearized
equations is obtained and the corresponding Fourier amplitudes are related by a
set of four simultaneous linear equations. Two of these equations result from

(31b) because two different frequencies enter into that equation. The constant
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term ac/E E%O) is dropped from (45) because it corresponds to a uniform
linear increase in the temperature of the medium which is of no interest in
the dispersion relation. The damping factor

o

=2

e 2

divides out of (31b), the first order wave equation, but the factor e'“z
entering (44) and (45) with the E(O)E(]) terms does not divide out. There are

two alternatives: One could go back and try to insert a double damping factor

o A2
(%)
in (38), but this would be rather artificial. Instead, since o is small, the
damping factor is merely replaced by 1 in (44) and (45). Thus the considera-
tions below pertain only to values of z small enough that the decreasing ampli-
tude of the electromagnetic waves does not signifiéantly alter the equations

for thermal and sound propagation. The four equations relating f, g, o', and

T are: |
(oo + 22 €2) 2 - 2] ¢+ [HQL 2 2]o+

+ [’]z Aeowf]p' + [,} BEowE] T =0 (46)
[0 ] o+ [ + 2L e2)a - 2] 4

' [% ;\Eow?] o' + [% B_Eow'f’] T =0 (47)

[a.c/E EOJ f + [an’E—-E ] g+ [in(y-l) w] p' +

oe oe o B

+ [-Kkz-ipocvw] T =0 (48)



-1 2 -1 2
[(eoe )éeoe"' ) Eokz]f +l[(€oe ;(eoe"' ) Eokz] §

e -1
" [wz-inkz-(uz - e AEng] ol +

-1
- [(—uzﬁpo + —6-—€°e BE§) kz] T =0 (49)

Throughout these equations, E, has been written in place of |Eo|. Since only
|E,| appears, the phase § does not enter these equations. Therefore, without
los.s. of general'lityl. Ed will be considered to be real and positive. The con-
sistency condition for these four equations is the vanishing of the determinant
of the coefficients of f, g; p' and T'. Since in (48), and also in (49), f
and g have the same coefficient, this 4X4 determinant can be written as the |
sum of two 3X3 determinants after replacing the first column by the difference
of the first and second columns. These two 3X3 determinants may then be added
to form a single 3X3 determinant after I_labsorbing the external factors into the
top rows. Expanding the resul;ing-3X3 détenninant along its top row.and setting
the result equal to zero, one obtains the following relation between the fre-

quency and the wave vector -l:. .the dispersion relation for the system:

2
2\[2 .o .2 /.2 o) €oe! BEQ\ .2
0= {(iw+§%;k)ﬁu - iNwk -(u-TAE) ] -1(71)( %—Bpo)wk 5
2
.{(Czki " foe i)(czkz } eoe“’z) _ 220,

(czk - ey ) (czkz - eoewz)]}

(eoe l)(e +2) " 2) uC/Eoe ? eoe-'l BE2
- -—2dC c__0€__0O
’ (1‘" ' Po’v ‘ Cy (u 6 p08)]+
(e l)(e +2) ac/e, -1
+ s{ i Le=1) oe wk? - — °ef.,2-mmk2 (uz-ege Aeﬁ)kz]}
0V
EZ
..20.[ 2 (A2 - e u?) +u? (A2 - eoewf)] (50)
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In order to put (50, in a slightly more compact form, the following abbrevia-

tions are introduced.

K
potv
Noe = Jeoe = index of refraction of unperturbed medidm (52)
‘ Noe Eg
IL = ——— = power in incident laser beam/unit area (53)
€. .~
y - oe 2
A %= AEo (54)
2
€.+l , E :
J I Eoe 0
B' = 25— B ——DOB (55)
ZmL£+ = (czkf eoewf) (56)
-1 2
ZwL£ (% - €petl) (57)

The dispersion relation can now be expressed in the form:

.;(w - ke [w? - Nk - (U2 - Ak -‘(y-l)(uz-a')wsz .

[ € g+ Ewl
([ ] €+E -—Z(Q%—_o-(-:._z-mr—)]-

oA acn__8
Ak2 0 (w - ik'k?) + 1 c°° (u? B'ﬂ +

= - i v
2 . 9Moer2 2 .2 et
+B§X_2wk +1p°cv 2 - hak? - (u -A)k]f
E2 £+w +£w

For comparison, the dispersion relation obtained by K. A. Brueckner and

5. Jornal*] for frequencies outside the Raman scattering range is:
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wlw? - v§k2 - 1Nk?] g + T (wo + 18)KE = 0 (59)
where |

: 2¢,/, | ' 2
g= (K - n—?‘—ﬂl 1K) - a -':%Ei)z (@ - 7 k) (59a)
- ’ e

veogl | o (59b)

63 e | (59c)

Although equation (58) is considérably more complicated in structure
than equation (59), the general features of the two equations are the same.

As a first approach to the analysis of (58), one should realize that (53)
‘ 2
\ o' _
the system can be obtained by letting Eg + 0 in (58). With no power in the

relates the ppwer'in the primary laser beam to E Thus.lthe free modes of

incident beam, therefore, (58) reduces to

[(m ¢ 1F-'c‘-‘k"’)(m? - iNok? - u2K?) - (y—l)uzwkz]'-
 Po'v -

. cz(kf + k2 + ZkLk3) ~ €(0) (”L + w)z P

f20E + 42 - 2kg) - gy (o - 0 = 0 (60)

The first factor in (60) contains a non-propagating thermal wave and two
damped sound waves coupled by the term (y-l)u%ukz. The last two factors
correspond to the four free modes for scattered, undamped electromagnetic

waves:

2 k
-“--o+Jl+k +20 where o = + 1 (61)
I E:f m_ T h
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specified by given values of k2 and k3. Two of the roots are low frequency

(w << wL). whereas the other two have frequencies of the'same order as the
laser frequency. It is clear that the rdots at the high frequency should be
eliminated, because it has been assumed previously, 1b evaluating time averages,
that the perturbed solutions vary much more slowly than tﬁe optical waves.

Therefore, factors like
2,2 2 :
will be replaced by

eL(O)[sz][ch"' = w...] ’ (53)

whei‘e:

< =R = velocity of 1ight in the medium (64)
"L(0)
Thus the free modes will include three thermal-sound waves and two electro-

magnetic waves.

A1l of the terms in ( 60) result from the left hand side of (58) because
the right hand side is proportional to the power in the primary laser beam.
Now, as the power in the laser beam is turned on; the right hand side couples
the five free modes described b,y (60). Additional tiny coupling arises inside
the left hand side itself through the A', B', and €2(0) terms.

For detailed consideration, the case of a primary'laser beam at 10.6 u
propagating through. air at approximately 10°C and at sténdard pressure will be
discussed. The numerical values for the parameters appearing in the dispersion

relation are:[7]

g = 1773 x 10 sec”!, k=592 o =1.25x 1073 gn/en’

N = 0.284 cm’/sec B =3.67 x 1073 deg”’
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Cv = 7.143 x 106 erg/gm-deg y=1.4

k' = 0.28 cme/sec €, = 1+ 5.65 x 1074
n, = 1+ 2.82 x 1074 a=(3x107 ) o
2
oan.cu g
u? = 8.39 x 10% (cwsec)? - (3.831 x 10%) o,
- ) .
o, ' 3210155 -25 sec’ ) 1
-‘gc--0988a ' '(].37)(]0 m L

on’
- -22 cm sec
A 0.452 S8 o + (1.10 x 10 . I ) I

| 3 : 3
Aly-1) . cm” d -21 cm sec” d
ML) - 24,7 SHdea 4 (5,00 x 10 ——gma——gﬂ) Wy

‘ -4 -25 sec3
€. =1+565x10 " + (1.37 x 10 ) 1
" gm me L

o ik 36 sect
A= (284 x 10710 SBSEC ) 1 4 (1.38 x 1076 S8 1, 2

» gm
€0¢mE
Bs-2000. _ (48 %10
TO
. . 10-36 secd 2
B' = - (0.662 x 107 2= ) 1,

2——)1|_

gm cin

In the above 1ist a dimensionless absorption constant % of order unity has
been introduced and the power IL s in units of ergs/sec per square centimeter.
Now, using these numerical values, one finds that the power dependont terms
are very small for power fluxes less.than 10 MN/cmz. except for the term which
represents energy absorption. In other places in the dispersion relation, the
power dependent terms are connected with the nonlinear index, and will be
omitted in the following. (The terms omitted are related to self-focusing in
a manner described by Brueckner and Jorna§4]) This neglect of the nonlinear
index and of the weak dependence of the optical coefficients of gases on the

temperature for fixed density allows the simplification of the dispersion
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relation to:
{lo - 1202 - imak? - o3P - (y-1) w22}

ofe kymw Jl6 k 0] =

Al 1
= - —EEEE—_ {[CLk+-w+] + [CLk_-w_]}o

2
-fp A acn_Bu
0[-3- (w-1'Kk%) + 1 —c——: ] (65)
p.A
In addition, for air at reasonable powers.zthe term -%—-(w-ik'kz) on the right
acn_fu
hand side is negligible compared to ——39-— . Introducing the variable
v
k
=3
VX (66 )
instead of kgs and defining
s
e ~ (67 )
JE[ cp

which corresponds to the parameter used in Ref. [4], the dispersion relation

can be written in the form
[(w ik k2) (w?- iNukP-u?k?) - (v-1)uZuk?] =
2 1 1
1acL K L iacl R k2 (68)
w-T—-CLk\)'F-ZE- w-—z——-LkV-'ZTL

The problem at this stage is the determination of the maximum growth

g Fv I
=3 Vs k

rate of any Fourier component of a distortion of the plane wave as a function
of the absorbed power from the bean. That is, one must solve the dispersion

relation for the frequencies as a function of k, v, IL’ and the characteristic
parameters of the medium, and thenlfind the maximum value of (- Imw) for real

v and k with |v| < 1. Such a problem cannot be solved analytically without
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further approximations. One region of interest would be the high power limit,
where the driving term would overwhelm the losses resulting from thermal con-
duction, viscosity, and the absorption of electromagnetic energy. In that
case, all the imaginary temms in equation (68), with the sole exception of

the "1" imnmediately preceding 7, can be dropped, reducing the dispersion
relation to the form employed by Brueckner and Jorna in equation (45) of the

reference [3].

To proceed analytically, Brueckner and JornaEg] neglected the second

term in the brackets on the right hand side of (68), and assumed that the
maximum growth rate would occur somewhere on the curve in the v, k plane

determined by the constraint

k2
Re [w-cl_(kv-!- ?TL-ﬂ = 0. (69)

Along that curve, the maximum growth rate 1is

(-Imw) ., =3 /% (1.08) , (70)

max
which corresponds to

0.97515
vs k 'ﬁ{ 3300 Vowoes ] (71)

(These results differ from those in reference [4], which are erroneous.)
There is no assurance that the actual maximum growth rate does 1ie along the
one-dimensional subset of the v,k plane assumed in refererice [4]. In reference

[ 5], a search was conducted along the 1ine
R .
v+ m =0,

However, the result for the maximum,

3% (1.06), (72)



is two percent smaller. No other curve in the v, k plane has been found
which allows an analytical search. Nevertheless, one suspects that these
answers are sufficiently close and that further analytical effort is not

Justified, because of the previous approximations.

An interesting unknown not discussed previously is the power f]ux
required to stimulate these instabilities. This threshold power is ciearly a
critical function of the losses in the system, which therefore repders it
important to treat them carefully. If the second term on the right hahdaside
of equation (68) is dropped, the instability appears to have no ;hreghold.'
because the conduction loss, which must be overcome, vanishes .as k + 0.
However, as k + C, the Stokes and anti-Stokes terms'on'the fight hand side of
equation (68) tend to cancel each other, and, therefdre; there is a threshold
power flux for these stimulated thermal Rayleigh scéttering instabilities.
This threshold was determined by computer to be 312 ergs/sec ber square

centimeter. {The computer program itself is gxﬁibited in Appendix A of this

report.)

The presence of a wind does not alter the growth rates for distortions.
This can be easily seen by considering the problem from a frame of reference -
moving with fhe fluid. A uniform beam remains a uniform beam in the moving
frame, although its direction of propagation is shifted. This shift in
direction has no effect upon the stability discussion.

In order to attempt to examine the behavior of the beam in more detail,
without being restricted to the linearized equations, a computer solution of
the full set of laser-fluid equations was attempted. _Certain'computational

~problems were encountered and are discussed in the next section. Then, in

Section IV, the results of the computer calculation are discussed.
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PART III
STABILITY AND UTILITY ANALYSIS

It is well known thaf in the solution of partial
differential equations two problems arise. The first
problem is that the system of difference .equations may
not Se stable against error growth., The second problem
is that the solution of the difference equations may not
converge to that of the differential equations. Von
Neumann[8¥ropésed.a necessary condition for stability
fbr linear partial difrcrential equations of parabolic
" and h&perbolic types. Thié condition has been gener- |
| alized by Kato[gland others .[10]

In this{sectioﬁ, a handy sufficiént condition for
stability of differencc systems associated ﬁith parabolic
and hyperbolic equations, both ;inear and non-linear,
will be discussed. Consideration will be given to the
generation of errors in computer solutions and a new
criterion for the utility of numerical integration
scﬁemes for complicated systems of equations will be.
proposed. The new term "utility" is introduced to
distinguish the criterion from the better known .
criterion of "stability". Some simple applications of

this criterion will be examined in this chapter, as a
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prelude t6 its use in the more complicated laser-fluid
problem, ’ ' ’

The concept of "utility" 39 basicully very simple,
A differencing scheme is "useful" if the sclutions of
the difference eqﬁations are sufficiently accurate
approximations to the solutidns of the partial differen-
tial equations over the domain of interest, Such an
" integration technique may not be stable, according to
the usual definition of "stability" and, thus, mey not
be convergent, eithef. This lack of stability and
convergence does not cause alarm, because the accuracy
can be estimated. The best analosy would be an |
asymptotic scries expansion for a function., Such an
expunsion may not converge to the function, yet cen
still be a highly satisfactory description of the

function over the domain of interest,
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A, The Stability Criteria

The most general form for a multi-level difference

scheme 1is
AgWarg + Al 4 = - o +Auth=0 (T3

where A,,AFM-Q--A, are finite-difference operators which
are functions of time in general. The time is designated
by N and W, is the dépendent-variable of the difference.

.equation.' The actugl' solutions, WU, =U(nst) , for the
associated syétem of differential equations will not bdbe

" the same as W, becausé'qf truncation errors ha introduccd
at each step of the calculation, .

‘n equation of the form shown in (73) results from
converting'any system of pértial differential cquations
into a system of difference equations. The vector Wi
is a vector with many components representing the velues
of each of the dependent variables at each of the
spatial mesh points, In addition, Some of the components
of W. can be taken to represent temporal derivatives
of the dependent variables if the equation is of
second or higher order in time, ,

Assuming that ( 73), wheu supplemented by suitable
boundary and initial condition has a unique solution,

one may write



Wheg = BJ’I Wheget + == - - -~ t B W, +Jn (74

" where
-l

The solution of the system of differential equa-
tions, evaluated at the time nAIZ, will be denoted by
Un , and the value of the solutiho.ns of the difference
equations generated by the computer hy Wa + The differ-
ence between these values will be called the error and
will be denoted by €.. In general W, #uw, because of
round off errors, . .

If @, is sufficiently small then it will satisfy

a lincar system of difference equations,
enfb = Cz.g enea-. +------ + CCt Gn , ‘ (75)

| G, represents the local errors introduced at eacl'.nl step |
and :’Ls the sum of truncation errors and round off errors.
For linear equations, ¢; = B; and C; will be independent
of 1 if the time does not enter explicitly into the
linear equation. However, if the basic system of
equations is non-linear, then Cj() A Bd- (n) »

The vectors &,, €n.,, ----- + Cagp-y 88 well as

Wha, Whe) ==--- ,Whrg-1can be arranged so that the com-
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ponents form new vectors,
many components

€neg-1
E, = e":t".' and

€n

E. and W, , with § times as

M".‘
W, = Wb (76)

&,

Then equations ( 74) and (75) can be rewritten in the

form

Wnﬂ = gan + :):

) (77)
Ensi ""Z- E. t Grn’ (78)
where :
Bt'(") Bg.o(m) - - - -- By(n) B,(n;
L O it---ilg o
B, =Bnery= | o L ----- 0 o] (79
] ' ] (]
P e
(o) (o] o0 0o o 97 [») J
(Gt G - - Cemy G
I o ----- 0 ©
Co=sCnot)=| 0 - o 0
, e Do (8o
l N
| © 0 -=-=- I 0 J




and

A ““\ : "

~ i o o
' (81)
b

| P /' ' e

The matrices, I, appearing in (79) and (80) are

o----9

ldentity operators for the subspaces over which the
difference operators Bé and Cé operate.,

For homogeneous difference equations with time .
independent coefficients, the index N on 'ﬁ, can be d'r.opped

and equation (77) becomes
Wan = BW, ©(82)

where B = B (o) , l(antorowitchn‘llefined a system of
linear homogenecous difference equations with time
independent coefficients to be "stable" if, for specified
T, there exists a poéitive number T such that lgtot)]"
is uniformly bounded for all &t such that 0<ak ¢T
and for all integers M such that 04nok<T

: A straightforvard generalization for the case
where B 1is also a function of the time index M would
be the following,

Definition: A system of difference eguations is coalled

stable if, for specified T, there exists a positive
number T such that the set of operator products

Binot)B(n108) --- --- Btiod) is uniformly bounded for all



o4 such that o0<ox <% and for all integers n such
that o<nat<T '

In case tﬁe spatial coordinates do not enter

explicitly, the analys's of the system can be simplified

by & Fourier transform technique. In such cases equation

(82) will lead to an equation of the form

W, (R)= G(2t, R) W, (&) (83)

where W-ﬂl) is the spatial Fourier transform of W .
The matrix &(o%4,4) is called the amplification matrix.
An equivalent statement of the Kantorowitch stability
criterion is that for spzcified T, there exists a posi-
tive numper € such that the set ot operators G"(ot, #)

is uniformly bounded for all values of # and for all at

such that 0<o4<%t and for all integers M such that

Ocnar T

The value of the Kantorowitch stability criterion
? R 0 |
lies in the proof by P.D. Lat'**'ltnat in the 1tmit

thét ok tends to zero, all systems which are stable lead

"to solutions which converge to those of the associated

differential equations ‘and vice versa, To procecd it is
useful to introduce some standard terms:
(1) The L, norm of a colum.n vector \f , denoted by lvl‘,
is defined by Ivip = z R JL["J

"(2) The maximum norm or thn Lo norm of a column vector,
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V' ., denoted by IVl is defined by |v{, = Ha|y;|

(3) The induced matrix norm of a matrix X , denoted by

I%l, or I¥l, is defined by IX| = . lalcu_u-] .
(4) The radius of a matrix ¥ , denoted by R(X), is

defined by R(x)=Mx(2[%;1)= Xl

The radius of a product of matrices is not greater

than the product of the radii of the matrices,
(5) The spectral radius of a matrix X , denoted by
fLX) , is defined by )= Hax,.
where Ai ( i=12 ---m) are the eigenvalues of
¥ . 01eai-1y, it is true that P(X)SRR) =l¥l,,
If X is a normal metrix (commutes with its |
hermitoan adjoint), then it can easily be shown

that
()] = R(X) = [ R

With the aid of these terms, the Von Neumenn
necessary condition for stability can be stated in the
following way. A necessary condition for stability is
that there exists positive numbers T and D such that
the spectral radius (&) of the amplification matrix

G (ot R) satisfies P(d)< | +Dak for all A and all
ok such that o0<at<T , If ¢(of, &) is a normal
matrix (commutes with its hermitian conjugate), then the

Von Noumenn condition is sufficient =s well as nececsary,
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Many sufficient cqnditi’ons for stability have been
proposed."lo;u] The analysis for stability has been
generalized to the case in whicia the coefficients of the
differential equations are time dependent by P.D, Lax'9+13
and many otherspo] It was further generalized by W.G. |
-Strané-"p’ 14lnd many othex"sr'wlo the case in which the
fundamental system of equations is non-linear., These
extensions will not be detailed here. Instead a handy
sufficient condition for stability will _be_considered.
Theorem: A sufficient condition for stability is that,
for specified T, there exist positive numbers vand D

such that

R £ 1+ Dok . (84 )
for all at such that 0<at<T , whore
R = Mox R ( Bin,of) = Hox | B(n, o0, (85)

for all positive integers ¥ < T/ot. For a linear

equation with time independent coefficients,
R=R(E)= T8I,

oo

Proof: For R £ |-+Dst , it follows that R" <K

where K = £°7 , Therefore,

I Binatr)Benr,at) - - Blrob)l
=R(Bmat)B (w1,08)---- Bl1,01))
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£ R(Bnap)R(B(n-Lok)---- R(B(La8))

2Hax R 1} 2K
for all Af and n such that 0<ot<¢t and 0¢not< T
so that the maximum norm is uniformly bounded. Since
the maximum norm is uniformly bounded, then the matrix
product is uniformly boundeé. Thus the stability
definition given above is satisfied. Q.E.D. |

A matrix % i3 called a dominant diagonal matrix

if the "interior radius", R’m ()() >0 , where

Rint )= mmn| %, ]———Hax/- i %], (86)
Lemma: For a two level implicit scheme AlntdW,, = Wf, ,
a sufficient condition for stability fop spccified T
is that there exist positive numbers. T and O such that

o<-=!7-.<.|+vo;l-, (87)

for all a£ such that 0494 < T and for all integers

n such that 0<nat< T , where

Ron == Min Rin(A(n))



Proof: Since Rin(A(W)>0 for all M such that o<nat<T
it 48 true that A'(m)= B (I +E +&+E’+----) yhere

T R
=|0 A"..--. lE"'I AB ; ie E T
= io. A F BB A BarYusit iy,
: ] '

It follows that

ROAW) S R(BY[ 1 + R(E) + (REEN + (R '+ -- -] = REL
< _ 1 & 7

Wi . aq( ] I N > la..
l”gxla;;l]h-*fg";;‘.].a.‘_ai Minfa| Mz 14l

R

T RnlAw) -

n N

Therefore, since (—-‘:2:':)_.—_- (1+Dsk)
it follows that

"
4K where K=¢

fA YA ) -+ - A=A W ]
D R(ACOA )~ A et o)
£ R(AODRA®) - RIA=0) R(A(n)

< IR Sl v !
Rin(A) R (A) R.('@(n-o) Rl(”A(n))

n

() ek




Thus a uniform bound is obtained and the stability
definition is satisfied, Q.E.D. | |

The above lemma offers a sufficient condition for
stability of an implicit difference scheme. Iﬁ is
conceivable, of course,that some stable implicit differ..
.ence schemes might not satisfy the criterion given in
this lemma. More generous sufficient conditions can be
given, but none is as easy tq epply as this one,

As a practical note, it might be remerked that,
for actual computation, one is often inter=ated in using
' the largest value of Ak consistent with the stability
rcquirements for a given mesh size. This is éertainly
the situation in the computer solution of the laser-fluid
equations attempted in Part IV of this study. 1In
such cases the relation of T to the spatial mesh size
is of great interest. The spatial intervals are often
dictated by the scale of the initial configuration,

For cxample, if the dependent variable at £ =0 is Am2m2
tﬂén it 1is unlikely that values of AA larger ther. 0.3
would be useful from the standpoint of convergence
requirements, The connection between T and the spatial

mesh size can be illustrated with the diffusion equation

u—- ')!u .
%{.—7(‘5;‘7"' 4 U | (88)



where the term 4U is ivcluded to allow some exponential
growth in the s( ution, The simplest explicit difference

- scheme representing (88) is

“v‘liﬂ_ “V\ 7< 4 ‘?
io—t= I W), - 2Uy + U]y, (89)

where N is the time index and § is the spatial step

1ndex. This difference equation can be put in the form

nti
=) - 2Kofk n A% : :
U [: o+ perl UG+ KOL UL+ TR ( 90)

Using, for simplicity, the handy sufficient
criterion given by the theorem above, one would usc (90)
Lo evaluaie K o Since ihe iime does not enter expticite
ly, R=R . It is trivial to compute R directly from
(90) without writing down the matrix f; eﬁplicitly.

Doing so, one finds

- £
Sl *“*""%&lﬂ%l.

Siﬁce K ) Af ; &nd (aXx) are all positive, this expression
simplifies immediately to

'ﬁ-==] ..fK"*-;-‘ﬂA;(-'-f-E.Z(.I

fex) At . (91)

.The stability condition now enters through the argument
necessary to remove the magnitude bars in (91). One

must be careful to realize that the D in the stability



theorem: R £ |+Dafmust not be a function of 6X . All
of stability analysis is couched in a framework in_which
AX is supposed to be allowed to go to zero in some
manner, ‘The D of the theorem must not bve affected by
Ax—>0 , In other words, one is not allowed to consider
%%‘% to be of order 4t as it would be for fixed 84X ,
The theorem does not intend ax to be fixed. Thus the
removal of the magnitude bars in (91) requires further
analysis., The term 44t may, of cource,.be considered
to be of order o because 4 is indeed fixed, independent

of X , If it is true that

27<0.t s 1 . . (92)

@xp — ¢

then (91) becomes

R=[1 - ZKeL + 4ot] + 2Kk = (4 4ot (93)

and 4 plays the role of D . in the thcorem and the scheme
is stable. . The stobility condition is (92) , so that

3
Até-&é—%g’t' (94)

Thus T has been discovered and related to 4X, There
is one othecr possibility for removing the magnitude

‘bars in (91). Ir —3(275%75-?1 , then (91) becomes

R==dKb 7 _ fup > |+ Olaf),

(6X)?
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so that tpe scheme fails to meet the sufficient con-
dition given in the.theorem.

" The points to be emphasized in the éxample above
are the fdliowing. The quantity D appearing in the
stability theorems must not depend on the spatial meéh
sizes. The usefulness of the sufficient condition
arises through the relation derived comnecting T with
the spatial mesh sizes. This relationship typically
arises by i'equiring the part ‘of K that is not of order’
ok to be less than or equél to one, Furthermore, a
'term containiné spatial mesh sizes in the denominator
is not of order 4% . As indicated earlier, there are
certainly more gencrous sufficient conditions available
in the 1iteratu}e than the one illustrated here, but
none are as quick and easy to apply. Since, hcuwever,
in computational work one never actuslly lets AX and oF
go to zero, it is not clear that analysis based on such
limit notions is necessarily the best approach to
practical problems. As a matter of fact, peculier
paradoxes such as the one discussed on page 230 of
Reference[10],arise from such 1iﬁit notions, In hope of
obtaining criteria of greater practical value, the
utility viewpoint has been devisced and will be presented

next.
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B., The Utility Criteria

The theorems mentioned above are not practically
applicable in general because, by omitting local error,
there is no way to estimate the maximum error growth,
Also, the increment of space variables (éX,AV.DZ;-~)
and the increment of time variable a} do not tend to
zero in actual computation, Therefore, a new criterion,
*futility" is proposed here to avoid some unnecessarily -
stringent requirements and to limit the maximum error
growth at the same time. The notation of the preceeding

section will be employed below.

NDefinition: For piven ¢ and T, and for any given

initial and boundary conditicns, a difference scheme is
useful if there exist positive numbers T, and T such
that for any a4 in the interval T 2242 7T, , the
absolute errors are bounded by &€ , for all integers N
‘such that. o ¢nok<T | where T is the physical time of
in?erest for a given problem, ot is the increment in
time, " is the time index, and T and 7, are to be
determined by thq round off and truncation error,

. respectively.

Theorem: For given € and T , a nccessary and suffi.
cient condition for utility is that there exist positive

numbers T and T, such that for any st in the interval

=44



T8 oka

| 8d Er[Ca (o (BE 4G+ )48, 146 ] +6 |
£€ ( 95)

for all integers n such that 0 <¢net < T - where
l C"{E:\-l[ et ] +Gfu-l}+&r1 ’oD
Sim M A e _ ~" ~“

T L T R A TR I
Proof: From the difference equation for the error, one
gets

= Gr,

El=aEc+G'

™\

E,=GEt& = G{GEtE }+§,

E4:&E3+&3 == (s 2:‘[2,‘:.,"'&' ] 'r'gz. §+G’5

S S er e e e e e =

.'E"+,=C..{‘(:_,[----(C,E,-Fér" )"’”I+&n-:}+6rn .
It is easily seen from the definition of E, that
M = Ma - . ' .
f‘xle,,[w “Xlt.,.Ln . -

for all integers n such that o©<wnat<T , Therefore,

€ 1is the upper bound of the maximum absolute error
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for any a4 in the interval 7 £at< 7%, . The maxima
shown in (97 ) exist because only a finite set of values
.of n are involved for T >0 ., Q.E.D. '

For linear equationé with con.stant coefficients,
T is independent of n. If one makes the additional.
assumption that a is also independent of n, then "

equation (95) becomes
[CZ+C+C 4 TP ----¢ 3“)GL°

Znﬂ - I =

T -1 G

e (e

(=~

The local error C?n can be expressed in the form:
~ S+ ‘ o -
Gin =Pt H, = B+ h, 4t ( 99)

where R and H, are the local round dff error and
truncation error, respectively. I"‘or.a general differ.
‘ence scheme, one may write Hn =hasad"', where S is
determined by the difference scheme.['e] |

A handy sufficient condition for utility will now

be given. The following notation is introduced for

convenience:
R =HaxR(c, ) =Hax| Cul, | (100)
G = Hax[ Q| + Max|H,[ =P + T os* aon)
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where the ‘maxima are computed over the finite set or
values of n such that o <notlT.for specified T , T a5
and T, such that % <at<T, , The set of integers n
is finite because of the upper bound: —% .

Theorem: For given € end T , a sufficient condition
for utility is that there exist positive numbers

and - T. such that

-hﬂ‘_- l -

h £ € (102)
= (P +hoet’) -

for all A} such that T £o%< T and for all integers
n such that o0<nat<T ,
Proof: The quantity appearing in line (95) of the

preceeding theorem is

~ ~ o~ ~n . | ~ = ~
|Eaf Gl G (o (BF, +§ )1 248,146 4G, ]

LR (| (TR T SR YRS VTS PO | YL

& R{R(R(-~ (RE+&)+)+§ ] +§} +5

n fu‘l!S

=[1+R + R4 R4---- + R
o 54 | .

R -1 ,= st
e A

QoEo Do

-47- .



1LFor-- n =={; , the LHS of (102) becomes

—=apt!
i‘z" __—_,' (F+hof") . If ok is very.large, then the

truncation error F 44#%

*' will become large and the

error can surpass the bound., If, on the other hand, At
is ve.ry small, then the round off error from P  can
build to a large value and surpass the crror b6u11d e
There may, however, exist a region of ot, (T &o4£T) ,
in which the utility conditiqn is satisfied., Obviously!
if R=| , then the proof above breaks down in the last

line and the cpiterion cun be stated
e (F +Rat’™) s € (103)

for all n such that 0<net<T , This criterion would
require that the minimum of -‘-5: + Tot’ ve less than €/T .
The condition, (103 ) would not be useful unless one
actually could estimate P and & . This cen be done
easily.only for very simple schemes, There is, however,
no'necessity to take R=| since, without loss of gencr-
ality, a larger value can be used in place of R . Thus
(102) may be used in all cases..

A very useful corollary to this theorem can be
given, based on the precondition that || €1, can be
written in the form '

I Tl =1+ 5ok sothat R=1+5sk (104)
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where, uniike the case of stability criteria, 3,

( and hence & ). 1is allowed to-depend on the spatial
mesh sizes, One should notice that condition (104 ) for
R is not the same as the stability criterion (86 ) for
two reasons: $ , unlike D, is allowed to depend on the
spatial mesh sizes and, furthermore, the R in (104 ) is
equal to Max "E'n”’o only for o¢n<—?:c,-' , a finite set of
values,

Corollary: If precond’tion (104) is satisfied, then the

sufficient conditién (102 becox}wes

- n¢l
(U+3et) -1 (5 tRaf) €, (105)
S ok

The precondition bears further discussion, Certein.

ly, for the difference scheme

n#l_‘__ ...n : -.4
Ey =26 + 28LEl . (106 )

it is true that ]]EL[°u=z-+g§g , 50 that the precondition
(100) is not satisfied. Iwn such a situation, the suf-
ficient condition (105 ) could not be applied and one
would have to use (102), Equatiocn (106) represents an
unusual situation, however, For difference equations
resulting from differcntial cquations written in a

form where only first derivatives with.respect to time

arisce, then one can have the explicit scheme:
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Enﬁ = En

= = @.E" => E"™=E"+6tQE", (107)

where Q, is a matfix operating on the components of ",
Notice that in this canonical situation an unusual factor
like the 2 in (106 ) does not enter.

It happens that in very many difference schemes,
the precondition (104) is automatically satisfied,
There are cases, however, for which (104 ) imposes a
real condition. For example, the diffusion ecquation

(88) ilecads to (91):

&l =7 =1 - 2K 4,\4—' 4 2 KAk
" o, ‘R (AX)' i ! (Ax),- .

* e

Thus | t.‘ﬂ con be put in the form [ + 5/-%, as shown

[}
in (93) with 3 =4, only at the price of accepting

the condition

_2_(1%.&_4_1 (108)
6X)% .

which happens to be the stability condition (92). Thus,
in this example, one gets the stability condition as o

precondition for the utility condition:

u%ﬁ§;L<5+KmFUse (109)

and furthermore § is independent of mesh gize in this

qc&se. Both (108 ) and (109 ) nmust be satisfied in order
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to appeal to the sufficiency condition ( 105) for utility.
Instead, one dan,.of course, use the simple condition
(102) If 4=0 iﬁ (88) , then one still gets the
stability criterion as a precondition and one can use
(103) for the utility criterion as alread& discussed.
There is a third option available, if one wishes
to use neither (102) nor the combination (104 )-(105).
“One can depide to accept a slightly more restrictive,

condition. For example, from (91) one can write

RS 1 +[5 + 4lot =1 + 50t (110 )
and use im:in (105) to get the rather strong condition
for utility -

nt

(c+§,i;at) =1 (B +TFar)ze (m)
Seﬁl-‘* .

The Schrddinger equation is similar to the
aiffusion equabion (88), except that the factor, i,
muitiplies %% ‘on the left hand side of the equation.
This innocuous looking factor of i has the crucial
effect that no explicit difference scheme for the
Schrodinger equation can be stable!xs} This can easily
be seen by computing R . This time there is no
stabil;ty condition such as (92) and, correspondinpgly,

thg brecondition C104) is, more or less, automatically
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satisfied and (.105) gives a utility criterion which,
unlike (109 ), involves the spatial mesh sizes. The
Schrodinger equation and other examples will be analyzed
in detail at the end of this section .to further illus-
trate the application of the utility criterion,

The practical value of criterion (105) or (111. )
lies in the fact thgt large values of n will often be
used, say ns< A ==zr=leq It is then useful to rewrite

(105} in the form

— el ., 6— = e .
Sor) £ 1+ (36f) o = .
(1+3ar) < )cp‘+mf~)°"5“*)¢5+nof") , (12)

where 1t is presumed that the error bound €& 1is
generous enough compared to the errcrs in any single
step that the 1 will be insignificant and can be dropped.

Taking logarithms, one then obtains the criticsl condi-

tion

= L1 ﬂog(glhk) | ._——EL—~—
Po3c|+$oi')~ NFT TN eoﬂp‘-fﬂaz"']

il €

NW 03[ —P-_r-Rdtn'J. (]]3)
where, again, it is presumed that the error bound is
generous enouzh that a term can be dropped on the RHS,
It is also presumed that N>>| so that N+l ~N . Thus
the useful form of ( 105) under these conditions 1is

= ! &
laa( | + S/-“‘j') "4"7\7/’/3[ -_p?’—‘_--.i-;*a-i—,;;"]' (”4)
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Now attention is called to the fact that it does not
matter very much what one uses in (114) for the ratio,
] '?’7;%3?“ , because only —& times the logarithm
~of this ratio enters, For example, if
—:—i:'_—— == /00 and N==/00

D + hot* '

where N is the number of steps to be used, then
103(}4-3010 éﬁ;ﬂgfo"’_") =—.£%_%1.=.0.o4606.
Then, using a table of natural logarithms, one finds:
I
Al & —— .
p& 215 . (115)

If, on the other hand, a considerably more generous

bound is used, say,

e 2
—T—,-.leol for =100'

‘then
Log (1 +Fat) & 2EED — 0607

' X
so that the condition is

—
3

Thus changing the error bound, & , by a factor of 1020

At <

only relaxes the criterion for 4% by a factor of 14,

Thus one might expect to try to use the rough criterion
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/
o< o= with g, ==/0 , (116)

for almost any system of equations, Ir (116) lcads to
instabilities in the computer solution, then one might
incrcase § to, say, 40 and try again. If, on the

other hand (116) 1lcads to stable solutions, but is too

re~trictive, then one might decrease 1& to, say, 1 and try

again to get stable solutions. Following thls conurse,

—

P and h would have. to be estinated only if one wished
to know thc value of' the error bound & corresponding to
(176). One must, of course, be able to distinguish
bobicen maviwomabital lustabllivies aml wrue physical
instabilities (such &s the &tin (88) )which may arise
in the computer output. With some expr:riencc‘onc is
able to spot earmarks of some of the mathematical
instabilities quite easily.[w]

For implicit two level schemes, it is easier to
use the slightly different criterion given in the
following lcecmma.

Lemma: For & two level implicit schemc AnwE =~E., a

sufficient conditlon for utility is

0 <

(P+Rhat™)ce )



for all integers n such that O<not< T , where

A dFA

Rin(A) = m}"’l A,‘,;' — Moax z’A'd, (117a)
and '

R;, == Min R (Aw), | (117b)

In some ways the utility criterion is similar to
“the "practical stability condition" discussed in
Referencellglbut the philosophy is drastically different
due to the fact thaf the utility criterion makes no
attempt to deal overtly with questions of stability.
It should also be mentioned that the utility criterion
is easy to apply., even to the complicated set of
equations describing the laser-fluid system. - The
"practical stability criterion" and other common
stability criteria are extremely difficult to apply.

'Partly the difference in the ease of application
of. the vafious tests arises from the fact that stability
and bounded error growth (utiiity) really are slightly
different concepts., In large part, however, the dif-
ferencés arise because some of the stability ﬁéthods
are made very complicated in order to weaken the con-
'dition on of as much as possible, In this regard it is
quickly admitﬁed that more complicated'utility tests

.can easily be davised, but such matters will not be
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considered here. It is a part of the utility philosophy
that utility criteria should be less complicated than
the equations one wishes to solve in the first place.

In this way it 1s hopad that the major part of the
computer time can be spent solving the equations of
interest, rather than trying to unravel stability or
utility criteria, Stable or unstable, convergent or
divergent, if the computer solution correctly describes
the phenomena for which the differential equations were

written, then that is utility at its finest.
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C. Examples of Utility Analysis

In order to 1llustrate the application of the
utility criterion, several examples wlll now be glven.
The criterion will be applied to the Schrodinger equa-
tion, the Dirac equation, and a nonlinear partial dif-
ferentlial equation similar to the laser self-focusing
equation. In each case, three different 1teration
schemes are considered: a two level explicit differ-
ence scheme, a two level implicit difference scheme, and
a simple multi-level "Leap-Frog" scheme. The method of
finite differences 1s not necessarily the best means of
solving these particular differential equations, nor
are the selected difference schemes necessarily the
best. These examples are presented chiefly to 1llustrate
the application of utility criteria. For simplicity, it
is assumed in these examples that € =/0"5 and Fs==10-15

Certain transformations are introduced in the
examples in order to reduce truncation errors. This
technique 1s a standard numerical procedure and 1s often
called the "integral method." The Schrédinger equation,

for example, may be put in the form:

2 [pep(-k | vdt)]

. X 2 t ’
=B (v ) exp 5 [ velt’)  me
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Integrating, now, from %. to Aw. , one obtains:

ne éllﬂ
Y exp (-5 [Tvdr)

“uﬂ

- . . t
— exp(- A [Vdt) + 4k [ ST d)expl-4 [var) (19
Taking Y = (F exp ( _.-’%- ftv,,(;t‘) and making
the approximafion that
(V‘Lf»)exp(-;.’;‘-f\/di')
tn
~ (V') exp(~Z [ vdt'),

one can proceed to obtain difference equations for the
better dependent variable, q”“. The integral method is
incorporsted inte the cxamples beleow for the Schrddinger

equation,

1. Schroedinser Eguation

.At%—‘ﬁ =H¢ | (120)
i.e. |
. z L
xt%% ————-~-2*—,;,Vt{'+v% . (121)
Let
g = F exp( [twu) (122)
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80 that .
't 2 -
“ﬁ%}f’ exp(-z[ vdt)[-£ W‘F‘**P(;%[tvdt))]‘ (123)

(a). Two level explicit difference scheme (forward time

differences)

Fip = Fin + R0 Feit P(Aﬂf“/'”o* “erdt)

+ q;'..,,a& e"P(',Tﬁ((V;—lJJ["'\,/.'d'a)al*)"zq;‘-k]m;
[‘Fdﬂ-ﬂexP(AEI‘%dﬂﬁ ad'ﬁ)dt)
# B P G Tt = Vit 2 5 o
- 4n '
[ F P (25 [V jou- i) )
- da ’
wa—fe*P(f%lN‘J“" Vi) dt)-2¢; Icaa)‘}"t (124 )

Since this is a linear equation, the error satisfies

the relation:
E.:;.'A — E,a.k t {[ ..Me"f’(ff{?‘f«‘ujr Vija)dt)
,4,43*P(A1;f Viaja = i) - 2E5  Jobs
t[E; “QexP(ﬁ#[( fina = Vsja) d%)

+'=‘.-32ﬁ*i’(:'a[w;,..¢ j0d5)- 265, ] ox



T [ E]p p(-,;f( jan— Vija)dt)

— ) 45 - !
‘ +L-,;‘-k,| eKP(':lﬁ[(Vi"“..l" V,".‘)d*>‘2h:-‘l]@l}4t

5 (125)

(4]
MY tH.

For miven € and T, the necessary and sufficient con-
dition for utility, involving matrix multiplication of
the C, , can be determined by usinp; a computer., However,
the sufficient condition (105 ) for utility of o# for

| fixed N =loo where T= Noi=loaAfcan be obtained very

easily as follows:

L SR < - {
RCE)=1+Fok =1+ "'71>t(‘[_\,0t+(“,‘“L B

AN | J
i ""l # tox) Tep t @y

o~ t A I A I
[+ 5ot oot Tayr * (az)‘J

= i ! |
[K] = [h]at

~ {1 oz*, + lzmot“w" (o 4 "ay*""-” t Pfl‘""’ﬂ} of  qz1)

so that $=0,
If the initial condition of ¥ and the potential V are

*cmooth functions of x,y,z2, for a reasonable time interval
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T of physical interest, then the local truncation error
may be assumed to i>e about the same order as that of the
round off error. The sufficient condition for utility
"is simply
m
ok < . (128)
4% (g5 * o5 * o)

Actually, there is an upper limit for T depending on

the smoothness of V as well as on the boundary and on

the initial condition of |

(2)e Two level implicit difference scheme (backward time
differences)

From ( 123)

el ,m fm
- 1 (- vt
+ qiuﬂ XP(A'GJ ( “d‘l Ajd) di) -2 (E-:*;]G%(-)-"
+lq:“::ﬁe P(—'{!( ’d“* A'J*)d*)

o ° tner
'+‘f‘6:4 XP(—;I{j(K‘-IQ Adﬁ)dt) Z'LFJA](O?)‘

[4

ne!

'+[(‘F‘*HGKP(:‘E£ ‘0*“ '.‘&)di')

+q:‘4-l XP(Aﬁ[ A‘&I" Adﬁ)d*) ,‘g] (oz)‘}A't

n

L]i“ 129 )
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The error satisf‘ies the equation

net

Eija ™ zm{[Eol‘k XP(T[ Vaja —Vija)dt)

.-.nl ( tons
,‘,‘ XP [(v-la&- Aaﬁ)dt) ZE R](AX)
tan
+[E,Me"f’( 7] ( Vijut=Vija) d4)
fn el
+E‘4&erp(—'g‘[ Vijh—Yja)d¥) - ZE ]'

(Gl )
FE exp( <L [
Aj&ﬂ P ﬁ (VAJRH ,‘Q)Jt)

né!

+ E;,‘a-.e"f’(“r'[ (Vi j 4 ~Viga) d5) - ZEM]M&).} at

*M+ F'?Jff- + ‘dhjfi. . (130)

To apply ( 117), one computes:

g ] {
gE A *en’ zar)

m
z}—%aﬁ(-{zﬂo—.-l--‘z-'j} (A%)) (131)
For A/=={;=/oo, the sufficient condition for ;xtility
is |

Ak & s

7 (132
5‘# (‘0;)‘ + md-zz's}) . | )
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(3). A simple multilevel difference scheme (Leap-Frog

Scheme)

- q: M 8 '75—'{[‘?” &eKP(‘ﬁI(v" iR~ ﬂ)d*‘)

ntl

AT
+¢, W PG tI( i Y0 -2 el g
‘Hq:oﬂ& P(ATJ( AR ‘da)“.)

+ ¢ .‘,qe"f’("?’[,(‘/‘a"“ V*dk)d*) qu ](“J"

[ <jkt ’(P( {2‘454+.‘V;d-a)di)

+ & exP(:-“IE { E\/xa@r\/xaa)ﬂ'*) Wil éﬁi
(133 )

Since §=2 for three levels, ¢ has a very simple form

namely
~ (¢ 1
C—-—(I oJ, : (134)

Therefbre;

R(E)=1+T5of = [ 1] + | 3aBerEs + oy e

: { {
+|23Flok (G + o3 * ap)

=+ 8ok Gm + o5 * E) . (135)
Again, for l\/==£, ={o0, the sufficient condition for
utility is

At & we

‘ "“(‘ZI—)- e _n'y—;£4.(_z't_)-l) ° (.]36)
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2. Dirac Equation

(P

-E£K-mc)Y =0,

For the explicit representation

rﬁ-[o 0"‘.}
-0 O
x’—z[' ©
(7] -1,
where
- (o I)' ond e
()
/
the equation has the form

E Dx‘

A*)] (3 “A> P

e
— 0

A= 1,23

(e iw) (G0

0O
4 'ﬁ% A )] A(g;a _,.40 &
0 [5¢ ['vX' ) ~(Fot%eR)
+4SA )_] *"(2)(‘ F4EA 2):’
( [,&? ﬁcA) [;mc 5
Cr ﬁc 4 (;_ A)J rasp )J
Gw ﬂc [;%K'G%?

(137)




Let
Y = (}:ekf;(—i%sxv) . o=, exp(- 42 o)

h=F P GE0) g = expls dzer).
Then
g‘£+ *eAql, +exP(—2-"-%'—‘L)[{5-s+ R,
e + EA) 3 G+ den) =0 (1400)
7“** + 4*‘5-/\(/' +exp(-¢-—i£¥@- + i——A)

h(,x T+ 2]~ (B +i2A) E}=0 (140b)

%%M—A ¢, + exp(- i’*—-——’\){(w"' ¢h),

+-ﬁ-/\)—i(5%;+§-sﬁtﬂlg}= O (140¢)
P+ SERE + exp(- eimex (2. 4 i)
il RN~ dEA) R ) (1400

(a), Two level explicit difference scheme (forward time

differences)

-l . “" . =
== éEr Z.amC).(n)
Feiin = Fuijo — $2HEL, 48X - exp(rings)
-
q:il f L{‘ —n
AgR)  Tstij 0, 4@ 3

4;“ L, {=n
] 4( -t 4) A8 .
( : AZ)AX — ﬁcA‘ksudﬂ))

: . ,
‘-ﬁ( 'E(A“ﬂﬁ)—% 140)

Yy __+?Q.Aq;“m)]4x (1412)
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- Nl -

™ _A@ " °_ 2imextn)) @
‘f}(;“)zqiua-n) '%'EA ‘{;“..”AX Q“P( 5 )

sf=n
ol qi(;n' 8) ‘f;u-u &) Ae
( Lz ax' + A 3(A‘4))

n

+ 4 Jf;u,jud) q:(.. -l "
( 2axt b ﬁl fiC A ‘tlijf))

- 4(4 Au) — q:(a -] (141
( e ) Jg_z.,.ﬁc,q 4“‘M)]A)(

—ntl -

— A.e " — w [
304 §4) q'nw Fich qiu,ja)“. exp( =24t )

" .
.[ ‘;n(/ij fe) ~ q:l.‘d A1) " )

3
20X + -E;CA 10644 48)
4" I{A-HJ a4y [A- (1) l‘e
( ZAxlz J -‘ A u(ﬁ)ﬁ))

]
—-Af Y 8 qi(i '-'ﬁ) tp”
( 2 (4 jH S ) A %(434))]

(141¢)

- At

= 3" _seprg" ’_ =24im¢ Xn
q@u;m" Ltu,;m ﬁcA‘fS(,:“)M e"P("",:,—Q)

lf'(m.m "P(:-:M) -+ A(’.A ,_;;
248X a4 &)

+ A( q’a(. dﬂ?) q:o(A,r'&) + 4? Alq
20X

ll;Jf))

—-( .%(43 ﬂﬂ)

'(4 £-1) Al
ZAX, g + CA Hb(l ﬁ))JAx

(141d)
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- Following. the same procedure as for the Schroedinger
equation, one can show that for N=X=l00, the sufficient
condition ( 111) for utility is

1
4[ C,Z [A*] +(25 + yr + 7)) .

Naturally, there is an upper limit for X’ as there was

Ax £ (142)

for the Schrddinger equation.
(b). Two l.evel implicit difference scheme (backward time

differences)

i 3 —nel . ‘me '(nH_)
“f'(aa&)"" %A ‘f;uM)Ax + exP(L"’%L' )e

l\ﬂ D"I
3(4 A‘" a 4 e
[( _) , 0 4+ A %(q*)

hﬂ

(%(a*" &) 40-l)ﬂ + AeA 4—““
ZAX' 4(A aﬂ)

- (‘i 8! A‘- £) " .
A( Hzéx‘ a4 j-t +ACA %(‘ag))JAx LE(A.O*) (]433)

Bt + 60 Eey X + exp(aistian) o

-t "t
© q’lll."d.'a) %‘A" |ﬂ) -+ Ae A q,
25X su,,&)

i Era= For Y

+ A Taeiguty” Bagijh) L ie "
( A'ZAX 24 + < Aq;(aaﬁ))
wett®! ntl

—( % “f g Aep
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nel
: -24mexXnt
q;u,:n &n ‘*’30 X + exp(2AmgEntd)e

‘F““ nﬂ
(ijRe) — (Aa R-) 4 , € =2
( . + A ‘?(A‘ 4))

2 ox*
\F“‘"*' ‘) %:t'_'.o a#
ala 4=l &
+( AZAx' "'T'A ‘quﬂ)>
J"” ‘Fnﬂ ; et , '--n
-4 Gjo ) Taiz-18) e A s
(g 0~ Fijpo , je g cgu.“,)_]ax T (183

ntl
. AL R F™ A ~24MEX"(N4
q:mw* weh {{‘..”Ax + exp (ML) o
nel

1(iv 4 H
) Al
[( d ( A‘) .+ 4 Q A ‘F':' ‘ ,>

ZAX

t;a + ‘*A -t
+i( Weijouy — Tidijad) ’g'g‘A Funaﬁ))

20x%*

" q;un » 9' i
- (4 g A#) (ij 4 e = .
( 2 Zoxle ! - 4 Aq;(‘aﬂ)] q;‘(';da). (]43d)

Following. the same procedure as for the Schrodinger

equation,one gets

l 1
Rin(A) = 1_.[_'3_5,' Lol ., tNAX® (144 )
..\_1-43' AI{.A""’:)?":?“

Thereforc, the suff: .:nt condition for utility with

= X i s
_.z.;,_.loa is

A% & (145)
‘ MQ,J(* »:‘ M‘




(¢). A simple multilevel difference scheme (Leap-Frog
scheme)

n¥ n-l . " ) . -
q.:u:;a; == “Eu‘;a) - %CQA'%U‘-MAX —-exP(Z*—ﬂgﬁv)o
Frsiann— Foi:
¢ 3L At) VA jR-1) o "
[( Y R "'ncA‘Is(x,jm)
n
+(%("l' ) (F(‘ if) e
4 ‘gax'g -4 4-4 A“E(q@)

i ( Bigon = Bty , e g ’ (1460
A( 4 ‘fljbx‘ dfad-l 'f'-i"E'A ‘E(‘.Ja))szx

el )

- . = 2 (e he
%(‘0“) q:z(,."‘) e A LE(‘J@AX - QXP(Z‘MC’.‘_(..?) L)
(qi“ma - m-mu

‘o 1
zax' 'L‘A qiuj &) >
+ i lFJ(A i# 8~ (f
ALY L 17 xe
( 26x% bl A ‘E{Ad/‘))
"( 4(‘150 & M) e 3 e °
7y A ‘Eu'a))} 28X (146b)
"f' nel
Jh‘ﬁ) == q.;'(aak) eA ‘P Ax = e)‘P(_JW_y.\ZQ)‘
‘Fllddaﬂ) ‘[4 »
aﬂ-') e "
l( 2 6x3 ’A"'A"Eud /z))
;(uum tF"("'JD.'. A "P )
2o¥! we D TudjR)
E
= A 2agHR) - B GA) e 2A%x°
( Zox* f' e oL ] (146c¢)

L1

S 24 . =2ime XY
Gijo = %o~ K s phX —oxp (2Amedn) o

Ering oy — Pt
iz B s ey,
+ __"‘ Q! lFl‘a,ut‘? ”
A( . “zox‘ eAl‘Et.'Ja))

L}
- 3§ ko) ~ qc;ma.() e 'y
(: 25X + 4L R, ,m) 24x°

(1464)
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Then

o—

R = 1+2 (&5 10+ Gk v ok MJ} (1)
= l-frAx
so that the sufficient condition for utility with

N-_-_Z,Z‘)?.—:too is

1
AX® & (148)

§[5 c2- XL ~as Lo B

3, Non-Linear Szlf.Focusine Eguation

%i ;"2 + %L:_HM'A =0 (149)

Let A=A +ih | 50 that

%’%+%§4+?}-‘¢‘+-}-—4—F+(A,+A YA, =0 (150a)
—%/\f.,,%g_._g;% LW — (A +ADA =0 ( 150b)

(a). Two level explicit scheme (forward time differences)

ml A : -— A". .
I(A‘) AI(AJ) { 20 Aﬂz)éa 1€ag-)

"

. L]
+ A*!Hl it AA(A-uL ZA:(A i) ,( Al(i'gu')— At(u'-li)

(ary Aay 207
+ [tA.'I.-a,)‘+ (Aap) I A Jok (151a)
A:"‘!O) ‘“‘) + {— u“uz)da/i:(;j..)
+ Atiet ) "‘An(a-u) ZA.(u)_‘_ //\,(,f,‘,-'ﬁ,(w)
(sr)? Aoy 24y
+ LA ) + (/,w,)_]/f.,,,,,}aA ' (15?b)
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The error satisfies the approximate relation:

hel [ ]

e Erigo 0 o Evtiw y +E)
Em']) 1 El(a'd') _'u_z)-oi,h_"“_ g —_‘J—’;“ﬁ?_—aﬁ

| E;; ‘o a(.-; i)
g A QY .( : JzAr 4 [‘A‘(AJ)) +3 (A‘(“,)J 2t ,

+ ZAMAJ)AJ{;.‘) E( ‘;}41 + P(A‘) + HI(AJ) (152a)
" . aph
B .,.{ Esjon™ Eotigey + Ewinp*E® 260))
I-lad) llaj) 242 . (o h)*

" w
I 5{&«5)"5(;-«:) w 2 noNg_wm
+ ;av< 25T (A, *3(/‘:03))]5:;;)

" n o
+2Al(.«'3)Az(;J) ‘(‘J)} t+ R 3( j) H‘z(ij) . (152b)

This yields

R<| ""23"*"*1'(;.‘%*"‘%7‘:' +2ji0t

L1+ (g + skt 20+ jo)aF=)+5ar  (153)
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where

h= T: 4 A:t‘ij) A J” , =3 f‘:’:. FA:.'J; (A, M:ugj +3(A¢:;‘-;ﬂ,

For N= 5 =100 | the sufficient condition is

1
4F£g*££k}+2qh+hg '

for all n=12,---- ,N.

ot £

(v). Two level implicit scheme (backward time

differences)
el wét wH nel "
A?; ¢ ) -l{ Aui o) = A"*l‘ﬂ 4 A * Aa(i-:g)‘ZAh‘é)
i 242 or
. ,vm - /5"‘" " a ( ) -
) Seiali e n vt et o
+ 1av ”z)ZF) wis CA«:,‘)) t (Au.'j))JAz(.'p ok
4]
R [7Y))
nel nH net " nH
A“’.'. +{ Al(‘jﬂ)- Alf;j-l) - Al(ﬁﬂf} + A"l'"j)- ZA,“‘")

net

| /A AHN
i i Priii LI TR, ICT
~ Fov 'K' v -m} L (A,,:‘-,)‘f (A”:'J)ﬂA";J’ g

"
=Auip .

Following the same procedure as in the first two
examples,
Rin = [ 1420k | - (1 ot 2 #2500k

Z |- ['ZLi + -;?‘Z?;t + z(él""d.a)ldi.' .
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For M=ZE=i00 | the sufficient condition is

1
afk £
S'[ Z(or)‘+ud“'d'-)] (157)
(¢). A simple multilevel difference scheme (Leap-Frog
scheme)
ne! “_
Al(a'")='= A“.‘) -2 { A‘DM’) Al(‘ A-1)

202

+

n L] n v
Arlhl!) + A’(i —u‘)-"z Alijl + ala. Az(iun . A,-_(.;...w
(737X AoY Y

+L Al + (Al DA Jok

( 158a)
nel TS An gt
Aaud) ”“)4‘2{— A!“ )A-E-‘( LE
] "
+ A“"‘J A“HD . A‘(‘L 4 = /Al(uu) Am"h‘)
(ar)* Ar\  zar
n \3 "
+ CPep) + Pl A}t (158b)
This yields
R21+2[Z5 + 37 +Z(J.¢3z)]of== I +5af ( 159)

Therefore, the sufficient condition for utility of Atk
with N=Z'§_= oo is

1

d* ..4. - ?
?lo5 + ;g;); +z.(d',+jg)]

( 160)

for all n=1,2---- N,
Another example, the laser-fluid system of equations

sconsidered in this study, will be given in the next
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section. It is similar to, but actually simpler than,

the self-focusing example just considered.
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PART IV
COMPUTER SOLUTION OF THE LASER-FLUID EQUATIONS

In this section a computer solution of the full set of laser-fluid
equations is presented. The two major difficulties in using numerical tech-
niques to solve differential equations by computer are error growth and
excessive computation time. In order to control the error growth, the
utility criterion discussed in the precedihg section has been used. Further-
more, highly accurate seven-point difference quotient representations of the
differential operators were employed to reduce truncation error. A procedure
for obtaining such representations is given in Appendix II. In order to
handle the economic problem of large computation time, a certain amount of
efficiency is introduced by minimizing the amount of core storage reouired
of the computer. This was accomplished in part by using overlaying techniques
to store several pieces of information at the same site in the computer. Thus
information is stored only as long as it is needed and then is replaced with
current material. The computation time was also minimized by making use of
a nonuniform grid. The seven-point difference relations allowed a relatively
large grid size without undue truncation error and the nonuniform grid
permitted a greater grid density in the region of special interest. Thus an

accurate solution could be obtained with a minimum of computation.

The laser-fluid equations were solved in the near field region of a
laser pulse, initially gaussian in both r and z, propagating through air at
1 atm of pressure and at 10°C. A cylindrical geometry was used and cylindrical
symmetry (no dependence on the angle ¢) was preserved at the price of dropping
the gravity term in the Navier-Stokes equation. Having cylindrical symmetry

amounts to a considerable simplification in the problem, so that the inclusion
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of the free convection effects due to gravity was not attempted in this
analysis. The problem described above amounts to a mixed initial-boundary
problem. The initial configurations of the laser beam and the fluid are
specified subject to certain boundary conditions at r = 0 which must be
satisfied at all times. Furthermore, the boundary condition at Z = 0 is time-
dependent, because the tail of the gaussian must be fed into the spatial
region. For the numerical solution, a spatial mesh of grid peints or stations
is used to représent the rz-plane. At a given instant in time, the values of
the various dependent variables are obtained at all of the stations. The
difference equations are then employed with these values of the dependent
variables to advance a step in time. This procedure is repeated over and

over until the desired time interval has been traversed. An explicit difference

scheme was used in this calculation, because such schemes are simplest to handle.

The laser-fluid equations are given in equations (25a)-(29) in Part I.
As mentioned above, the gravity term was dropped. Also, the t'iermal conduc-
tivity, «, was taken to be constant because its derivatives are very small.
The aquation of state was taken to be the ideal gas law. The numerical values
used for the various parameters are the same as those given for the linearized
analysis in Part II, because the same temperature and pressure were used for
the undisturbed mgdium. The laser frequency w and the dimensionless absorption

“1 and 10, respectively. The

constant a, were chosen to be 1.773 x 10]4 sec
wave equation, (25a), for linearly polarized 1ight in an absorptive medium is

taken to be

2
c 2y - &, () +ack (FE). (161)
3t

This equation is an approximate equation describing an electric field which is

polarized linearly. Strictly speaking, of course, Maxwell's equations do not
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allow cylindrically symmetric, linearly polarized beam.
The solution of (161 ) is taken to be in the form

iyt - -3
E=%(E] + iEz) e (m" kLZ) e -fz+c.c. . (162 )

->
where E] and E2 are slowly varying functions of and t and the laser frequency

and wave number are related by
€odit = 2K s (162a)

where €, is defined in (30F). Substituting (162 ) into (161 ) and dropping
the second derivatives of E] and E2 With respect to time, one can put the wave

equation in the form

2
ot c ot 2 o ’

ot we & -ZuLe

d
f?‘%[‘t"%"a ‘1'?*3 ‘]

9 1 de 3p
tele-e)E-cgpachr?
2 2 2, .2
1 |d% (> <k [, de () €2 ¢} 3Ep
- E, - — |2 (163 )
el 2 \3t) "2 7 e dp \3t] 3z W g 2
3E %k, oE 2 3E 2
2 _ L %2 ¢ |2 foa} a
® " Tae o m[‘”’:]*“az : ])+T51]+
+ 28y (g - R E+ L ERg |t
L€ L o 2/ p ot
A 1 de 3p
“gele-e) B -cHpatk”
2 2, .2
1 [d% (> ¢k [ deap 3 Tk ¥
+2w|_e [d—z (E)t)2 E w e (23-531: z wy az'i (164 )



Introducing, now, cylindrical coordinates and using cylindrical symmetry
and the other simplifications mentioned above, one obtains the laser-fluid

equations in the following form:

/v v av
.3.9. = - _32 o .3.2 o .‘——r _.r:. _.....z
ot Yvar " V22" Plar YTtz (165)

ot 5T
> lv" Y, 57} (166 )
oV oV oV
r. T,y or R
T)t_"(vrar Vi tH r)
[ oE oF -0z
1 1 2), 1 (£2 . £2y a3
tzle'\E o tE oy )"7(51 + Ep) € ar]e
3 V. v ov
] r r Z
+3L("+"')57(5r_+'r_+52_)
2 2
oV v v oV
r.l_r__r ri_R+3p
(G- 5 E)- ] e
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]

(- %
[

BEZ
ot

Vo= (168)

- 3E 3E
! 3 2\ 1 N 2 o 30 | -0z
tz|e (E1 77 tEp 3_) FolERED) e + (] +ED) e az]e

i v, v. av
1 r,r,_z
o ("+n)az(8r+r+az)
2 2
oV Vv oV
z,1_2 z) _R;9p
+n(;_2_+r r +_T) MTaz] (169)
r 0z
- 2 2
2 3E, 3°E 3, IE € = € €E, 2 ]
c 1 2.1 °"2 2 0 2
2 k + + ——— ¢ + a e E
e L L 92 'ar2 ror az2 /E(/eo+/5') z &2
f e =-¢
+GC 0 _] e.ﬁgE + (E E)E _]_E'EQE
23 /‘%'_'_/E- 1 2 Ve at 2 2¢ 0/ "2 € ot "1

2 2
2 oF 9 E oF o E € =€ oE 2
¢ 2 1,1°7 =1 0 1, o ]
- 2 k —& 4+ + = + + a += E
%LE[ L 3z ari r or 322 e (r—eo o /E) 9z L Sl

€E = € A
ac 0 ] ) ! 1 .3
+E[/;+/'E2+ JEE.—BE] e~ B-ce 5tk
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2 2 2. .2
1 of 30 ckL -éeaE] ckLaE]
"m[*: (at) E'I'st: (23 3T " B o0zl 171)
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where the notations

2
de
v - de and €"= (172a)
€ = do :‘1-2;
have been employed and
=6 +1e, (E+ED) (172b)

The easiest way to obtain a4 variable grid size is to introduce a trans-
formation to a new independent variable.. Thus, in order to have more grid
points in the region of special interest, small r, the nonlinear transformation

X

T—x (173 )

-sI-s
"

0
can be employed. The scale value, ro» can be chosen later according to the
dictates of convenience. After this transformation, equations (165) - (171)

become, for x # O:

| 2 v ov 2
P _ (1-x)° “°r . 1-x z |, (1-x) A 3p
at {"[ T rtrax et PR, raxt Yz (174)

o X o 9z
2
' 4 [av 2 av_\2
1=-x r 1=-x 2z
0 0
.o f20-0 32 ¥ (ot (Y2 ‘ . _3_‘_’_';2
Cv ro oX 92 r X '} 4
0
3 v ov
2n' | (1-x) r, l=x z
+€L[ vrax+rxvraz+
v ro X 0
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N 1-x

Wi
o+

r X 232 r ax 2 32

o

29v, 3
+ (1-x)¢ Yy VZJ+ T(y-1) [_E v 24y 22]

-0z
+%€;—/€(E]2+E§)e. }

r r ax Z 32z

-{!LXLZV .., ?I}‘ (175)

v v
-(%.31” _r_)} v T (176)

2 2
ov 2 3 ov o'V
2 _ 1 (1-x) r, 1-x r z
F '5{' ) 32 (n#n’ )( r, oxaz + roX 92 + az? )

+n(_(+3vz -(—2-)—(1 2x) )}

+
z " rax o Yz 3x

oE 3E, 1 -az
+ % [e' (E] 321 + E2 T ) %— (E]2 + Eg) (-ae" + ¢" %g):,e (177)
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1 Y\ et ¢k ap 2 Sk 3E
- '27.7'5"(3%) tylege)| Ept —3- (2" 5857 - o 2
L Zwl € L 9z
€ ~€
+glo = - 2=e 2, '5'%%51} (178)
Ve _+/e ZwLJE
2
oF { 2 4 3°E 3 oF 3 E oF
2 .1 c 1-X 1 1-% 1 1 2
== (- +-(TL(]-2~<) + + 2k
t € 25[ r sz r.Z x x 52 L 92
eo'e 3E-| (!2 1 "(—82)2 wL( ) E
+ o +3E|t]|5—¢ + €.-€

JE (JE;#VF) 92 T " ZmL ot 2 ‘% 1
2 2, .2,
_ckL ze'_p_'c)E_]_ckLaE]
2e ot 3z w, azi ]

+% a 0" Ey - o e'%%E] -e'%%Ez} (179)

/e _+/¢ ZmLJE J

Because of the symmetry of the probiem and the regularity of the

differential equations, the following boundary conditions must be satisfied

at x = 0:
oF oE oV ov 32v
A= 28T Bp o r.yv =0
X X 9X 9X  oX LY azz r
and (180 )
azvr v
2 2 —
axi 9X
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Equations (174)-(179) are not useful at x = 0 because indeterminate ratios

such as v./x appear in these equations. Applying equations (180 ) and using

L'Hopital's rule to evaluate the indeterminate ratios, one obtains the

following equations for use at x = 0:

r—f ax Y3

0

1t (24, 2)

oc 2 2\ -0z aT
+'2E7"E(EI+E2) }'Vzaz
v
r =
7 =0
2 2
av - v
zZ_1)R. 2 2z 2z
=~ T—9-+(2n+n')—2—+ -—2—}
sr p{ 9z 0z . r ox
v aE aE
R T z| . 1 1 3%,
'{ﬁ_z'+vzﬁ'}+7|;'(£laT+Ezaz)
(N
+%(E$+E§) -ag' + ¢" 35-)
3E 2 2%, 3% 3E e 3E
I,l{c 2 2,2 _, 1 o —2 2
M € W Efaxi 822 L 3z /E(/E;'h/e-) 'Y 4
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2
a 1 » “ -
* 1B - zq“(;;t) t7 (5 S)JEz*

(181)

(182)

(183)
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¢k
t— 20 8 _2 +
ZwLe ot 2 Yo oaz
+& o o1l _a et B¢ -e'?-ﬂs} (185)
2 /e:'h’é- 1 ZMLJE- ot "2 ot 1
aE 2 3%, % 3E e-e o
c2_1) c"|2 1., 142k 244 o 1
d el 2y ? %t 2z° L 32 & (Veg-/2) a9z
b 2
2 W
a 1 . {3p L
*Th *[r‘.{ € (at * 7 (el
2, T 2. 4
-ckL geléﬂa_El-Ck'-aE]
wae ot oz W 322
+c a—e_o:i-E - a e'-QEE -e'-a-gE} (]86)
2 /e 2 2 /2 ot "1 at -2

Equations (174)-(186) are the basic equations to be used for the solution
of laser-fluid problems in the near field region when cylindrical symnetry
pertains. These equations must, of course, be converted to difference equations
before the computer solution can be attempted. The difference equations will
not be presented here, becéuse they afe included in the computer program shown
in Appendix C. The interested reader will be able to locate the difference
equations in the program listing. As indicated earlier, seven-point difference
quotients were used to represent the differential operators appearing in (174)-
(186). These difference quotients and a method for deriving them are shown in
Appendix B. These expressions will be used in the consideration of the

utility criterion for the laser-fluid system of equations.



Once equations (174)-(186) have been obtained, it is vital that the
utility criterion or some other criterion be .applied to determine useful
time step sizes and corresbonding grid spacings. In spite of the complexity
of these equations, the utility criterion is extremely easy to obtain. This
is one of the attractive features of the utility approach. To illustrate the
ease of application of the handy sufficiency tests for utility described in
Part III, the derivation of the utility criterion for the laser-fluid systenm
will now be given. In the interest of brevity and to emphasize the simplicity
of the derivation, it will be presumed that the reader is well acquainted with
the discussion of the utility method given in Part III and with the examples

presented there.

An examination of equations (174)-(186) reveals that it is sufficient
to consider either (178) or (179) and ignore all the other equations. These
two equations dominate the utility criterion and either (178) or (179) can be
used, because either choice produces the same condition. Choosing, then, to
deal with (178) and keeping only the most important terms, one can obtain a
utility criterion from the equation | '

2
ot 2 4 3°E 3 ot
1< | (-=x) 2, {1-x) (1-2x) =2
ot &ﬁ € axf ros X ox

r

0
2 2, 2
L P . W - (18)
222 L3z " 252 187

wLG

Using the fact that csz2 = eoesz and putting e = Ege = 1 One can simplify (187)

to produce
2
of 4 3°E 3 3 oF
1. ¢ 1(0-x) 2, (1-x)° (1-2x) °*2 1
— + —_—- 2 — (]88)
ot ?F: r axi r2 x X k 3z
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The corresponding seven-point explicit difference equation is

e At (1-2x) fo
E 3k ~El gk * 3 {!_%'( ) + 5 (5?)74 2, ik

- 2% (g—z) E"’jk} (189)
7,4

2
where the difference operators (2—7) and(%;) are shown in equations (B12)
X
7,4 7,4

and (B12') of Appendix B, respectively. The superscript n is the time index

and j and k are, respectively, the x and z indices for the spatial grid points.

Thus,
= jAx and Z = kAz
The various coefficients are maximized for the choices
] - 2x 1
(- f) + 1 and "

where, in the denominator, x = jax + Ax because (189) does not apply at j = O.
[Equation (189) was taken from (178), whereas (185) is the appropriate equation

at x = 0.] After making these replacements, one obtains

2
n+l n cAt 2 n kL
El kT Bk A —_Ez(m ol M Jk} (190)

where
22 2 (32 :
= (ax) -1! operating on subscript j
% ax
7,4

Aj = (Ax)(%;) operating on subscript j

7,4
LY (az) (%E) operating on subscript k.

7'4
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One finds that the precondition (104) is already satisfied because no diagonal
j N .

3z “7.4

(105) can be used. Using equations (B12) and (B12'), R is trivially computed

term arises from L when the seven-point scheme ( is used. Thus condition

from (190) and one obtains

R=1 +7%8At,
where
TS @+ D+ G-De S+ Gy
TR L AU R UM R
G RS ERT A% A% £F 25 ¥
cc| —3 + -2l (191)
kLroz(Ax)E Az

il 1 (192)

This is such a strong constraint that one immediately wonders if,.perhaps,
mare generous sufficiency theorems for utility should not be sought. The
utility philosophy suggests a more practical approach: Try the condition and
then try to violate it and compare the reghlts. This was done for the problem
discussed in this report and no escape from (192) was possible. In fact, if
the criterion was violated by a factor of order 5 in At, then classic
instability phenomena were observed in the computer output. Thus, by a stroke

of bad Tuck, it appears that (192) must be obeyed.

In order to emphasize the implications of (192) for the study of the

propagation of laser pulses, a description of the accessible parameter regime
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will now be given. As a starting point for this discussion, the parameter

values used in the actual calculation will be listed. The electric field

at t = 0 was taken to be of the form

where

- 2
-4(.::_)2 -4(_Z_§29.)
Fe 0 e °

E, = (193)
E2=0,
= ]__ = =
r, = full e width of E](r,z Zps t=0)
= VZ - [full g -width of 1 at z =z, t = 0]
IL Z [on-axis intensity (in ergs/cm2 sec) atr=0, z = Z°
t = 0, time averaged over several optical periods]
=L =
=7 "€ € F
z, = full %--width of Eq(r=10,z, t =0)
(194)
zpo = location of the peak at t = 0
e 2, 6P . 64 U
- B 2
Jeoe c JE;; €Ty n J/2n €oe "o %o
= peak value of the electric field, squared
P_ = total power (in ergs/sec) of the puise at z = 25
t = 0, time averaged over several optical periods
U = total energy in the pulse at t = 0, time averaged over

several optical periods.

The values taken for these quantities were
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r. =200 cm

=9x10°cm =9 kn

N
]

13.5 x 10° em = 13 kn

N
"

4.7 x 10° [erg/cn®]"/2 (195)

-n
n

—y
"

L =3.3x 107 [ergs/(cm2 sec]
21

O
n

L 5.2 x 10" ergs/sec

U-9.8 x 10]6 ergs

and the air was taken to be initially in its unperturbed state at 1 atm

pressure and at 10°C.

The spatial grid was composed of 80 x 16 - 1280 mesh points. The z-
axis was evenly divided into 80 steps of size Az = 0.45 x 105 cm = 0.45 km

beginning at z = 0 and extending to z = 35.6 x 105 cm = 35.6 km. Thus the

th mesh point on the z-axis and

peak of E] was initially located at the 30
its %--width extended from the 20" to the 40th mesh point.- The radial variable
x has the range 0 < x < 1 and this range was evenly divided into 22 steps of
size AXx = é%a but only the 16 sites closest to the z-axis were used. The

more distant sites correspond to radial distances greater than 5 beam half-
widths. The first step away from the z-axis corresponds to the radial

distance Ar = 25%%ﬁ33 = 9.5 cm = 1%5 (radial half-width). The time step size

7

was taken to be At = 107’ sec and 100 steps were made so that the time interval

0<t 5_10'5 sec was treversed.

Taking these grid sizes and time steps and substituting into the
utility condition (192), one gets
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TE IO 2 AW W 7 |\ 27 & (196)
o

Thus, for the chosen step size, Az, the value used for At would violate the

condition, were it to be doubled. Of course, the condition (192) is only

approximate, but, as mentioned above, good solutions could not be obtained

for At - 1078

for Az. Clearly the value é% used for Ax does not saturate the
Ax piece of (196) and one could probably use Ax as small as ?%T Such a small
step size for Ax would, however, require three times as much spatial mesh

points and would exceed the storage capacity of the computer which was used.

The desire is to use as large a value of At as one can. In this regard,
the Ax piece of (196) is generous and would permit At - 1075, The Az step
size would have to be increased to Az - 5 km to allow this, however. Such a
large step size would be larger than the 4.5 km half-width of the pulse

selected, so that no details of deformation of the pulse could be observed.

If the beam is made narrower in radial extent, the Fresnel length
decreases and diffraction effects become important. The Fresnel length is
310 km for ro ™ 200 cm, so that one would become involved with far field
effects if the beam radius were decreased by more than a factor of 5.

Making the pulse longer in the z-direction expands the time scale over which
interesting effects may be studied. If, on the other hand, the pulse is
shortened in the z-direction, then one must shift to smaller valves of Az

in order to be able to follow details of the development of the pulse.
Shifting to smaller Az requires, because of (196), that one use smaller
values of At. The net effect is that no profit is derived from using

shorter pulses, because they can be followed only for correspondingly shorter
times.
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One aspect of the parameter regime has not yet been discussed: the
range of power for the beam. Since the power.rPL. does not appear in the
utility criterion, its role must be determined by experimentation with the
computer program. Very small powers are not interesting because there is
very little interaction with the fluid. In order to see instabilities and non-
linear effects during short times, one would wish to consider beams with large
power densities. The extremely large values shown in (195) produce interesting
effects, in a time interval of 10'5 seconds. Such beams can not be followed for
more than about 106 time steps, however, because the various dependent variables
begin to develop_large curvatures and vary on a scale smaller than the mesh~>
sizes. Thus if one wishes to follow the development for a longer period of
time, the mesh sizes must be decreased and eventually the time step will have
to be smaller, and then many more time steps will be required. In this regard,
one must keep in mind that if the mesh size is decreased, while the initial
pulse size is not decreased, then more mesh points wj]l be required and the
storage capacity of the computer 5150 becomes a 1imiting factor. The final
remaining option is to increase the power in the beam even more. The net
effect is that the large curvatures develop faster and the development can

be followed only for shorter periods of time.

One final remark about numerical solution of the laser-fluid equations
will be made before discussing the results of the computer calculation. Strong
growth, instabilities and nonlinear effects, cer often nut be followed because
of the mesh sizes employed. If these strong oscillations or secular growths
are generated by tiny rapidly changing terms; that is, if the instabilities
arise due to ripple effects which become strongly enhanced, then a crude
mesh size can smooth these effects out and, thereby, prohibit the occurrence

of the strongiy growing phenomena by removing their source. Very strong
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instabilities were found in Part II for the linearized laser-fluid equations.
The strongest of these instabilities are generated by very short wavelength
ripple. The mesh size emploved in the present calculation will begin to
wash out ripple abput an order of magnitude larger in wavelength than the
ripple which is most strongly"amblified in the linearized anaiysis. Thus,
one must bear in mind that some physical sources of pulse distortion will

be excised by the mesh selected.

Accepting the many restrictions noted above, we have examined the

propagation of a 200 cm by 9 km pulse with 10]7 ergs for 10'5 seconds. The

pulse moves three kilometers during this time and it is possible to observe

the onset of the laser-fluid interaction in some detail.

The results of the calculation are presented in Figures [1] - [17].

The electric field is conveniently considered in terms of the quantity

1/2
]

IE| = (2 + €2, (197)

where E] and E2 are the slowly varying electric field amplitudes defined in
(162 ). The instantaneous electric field is thus given by

E = |E| cos [t~ kz+ 6] (198)
where the phase GE is given by
_ -1

As shown in (193), at t = 0, E2 is taken to be zero and, consequently, GE is
zero initially. Thus

E| = E, at t=0 (199)
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and E, is described by equations (193)-(195) initially. This initial pulse
shape is exhibited in Figure [1a] and in Figure [3].

In Figure [1] the z-profile of the pulse is shown at the initial time,
at 10'5 second, and af two intermediate times. For t # 0, the pulses are not
ahsolutely symmetric about their peaks. In order to exhibit this asymmetry,
the curves are plotted as a function of |z - zcl ’ whefe z, is the center of
the pulse. This device allows direct comparison_of'the leading and trailing
edges of the pulses.' The center, Z.» is defined to be the point equidistant

from the leading and trailing edges at |E| =1 (_e_r%_)VZ. These values are:
cm

t=0 t=6x10° sec t=8x10° sec t=stsu
(200)

z, = 30 z, ~ 34 z, ~: 35.3 zc‘= 36.6

where for convenience, distances along the z-axis will be given in units of the

grid size: Az = 0.45 x 10°

.cm = 0.45 km. One notices, therefore, from
(200) that this pulse center propagates at the velocity Ve ® 2.97 x 1010 cm/sec,
the velocity of 1ight. The pulsé peaks, however, are observed to drift

backward with respect to zc:'

t=0 t=6x10"° sec t=8x10° sec t =107 sec

4 - ~ ~
zp 30 zp x 34 zp 35.2 zp ~ 35.3

(201)

so that after 10'5 seconds, the peak has lost about two thirds of a kilometer.
with respect to z.. Note that the exponential damping factor shown in (162 )
is not included in the quantity |E| appearing in the graphs. For air, this

"5 sec. Other than this effect, very

factor is larger than 0.95, even at t = 10
little energy is lost from the beam due to heating of the fluid, so the dis-
tortion effects shown in Figure [1] are rather minor and are noticeable only
near the peak of the pulse. Extra detail of this peak distortion is shown in

Figure [2]. For purposes of this display, the 1eading edges have been placed
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1/2
together so that the curves intersect at |E| = 103 (e_rg_) and the corres-
cm
ponding abscissa has been labeled 42.5, the location of this point at t = 0.
The retrograde peak motion and the corresponding loss of fore and aft symmetry

in the vicinity of the peak are plainly seen.

The radial beam profile is exhibited in Figures [3] and [4]. The
radial slice shown at each value of the time is taken through the position of
the maximum, zp. in the z-profile. In Figure [3] the entire beam profile
is shown for the initial and final times only. Comparison of the curves
reveals a small on-axis increase extending out to the beam halfwidth (half of
the full %--width) at ;§-= 100 cm. The effect amounts to a 47% increase in -

the on-axis intensity. Details and intermediate states are given in Figure [4].

Although the radial peak is on axis in the slice through the peak in
the z-profile, this is not the case for slices taken behind zp. For example,

at t = 10'5 sec, the principal peak is at z_ = 35.3. As one moves away from

this peak toward the trailing edge, the rad:a1 peak moves off axis giving a
maximal effect near z = 31. The principal peak of the pu1sé is, however,
always on axis. The radial profile at z = 31 is shawn in Figure [5]. This
is clearly only a small detail at t = 10'5 sec. The position of this off-

axis secondary peak is also located in Figure [9] and marked with tiny squares.

In order to follow the development of the phase of the electric field,
the quantity IE]I is plotted in Figures [6], [7], and [8]. for t # 0. Of
course, at t = 0, IE]I = |E| and the phase, Sg» is zero. In these three figures,
the graph of |E| is marked with dotted 1ines for comparison. The corresponding
value of |E2| can be deduced from these figures, using (197). These figures
show far more dramatic effects than the curves discussed above. At t =

6 x 10'6 sec, the phase is still nearly zero and E] is positive everywhere.
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At t = 8 x 1076

sec, however, E] has changed sign over a three kilometer
region extending from slightly in front of the peak of |E| toward the trailing
edge of the beam. This is clear-cut evidence of the onset of laser-fluid
interaction in the trailing edge of the beam. It is clear that the front of
the pulse and the distant tail are, as yet, unaffected by this interaction.

It is interesting that the unperturbed part of the leading edge does not

reach as far back as the principal peak. Thus, the peak already feels the
effects of the interaction to some degree and comparison of (200) and (201)
reveals that the peak will now begin to lose ground with respect to the center

of the pulse. This effect has already been noted in the graphs of |E| .

Since there are now places where |E,| is zero, it is clear that the
phase goes to %-at these sites. The amplitude E2 responds strongly at those
places where E] = 0, fulfilling the obligation to conserve power. One notices
that the graph of |E| remains very smooth, giving no indication that the
phase is varying rapidly. Figure [8] shows the later development of the

region in which E] changed sign. The region in which E] < 0 is now seven
1
e
advanced now. to a point well in advance of the principal peak and extends back

kilometers long, nearly as big as the — width of |E|. This region has

far into the tail. It appears that this node is propagating forward at nearly
four times the speed of 1ight. Furthermore, there has been another sign
reversal of E] slightly behind the peak. It is this kind of oscillatory
behavior in E]. with large variations on the scale of the chosen mesh size,
that brings a halt to further observation of the beam development by this
method.

On the rz-plane shown in Figure [9], the constant phase curve, E; =0,

is shown in detail at t = 10'5 sec. Also marked, with small open circles, is
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the on-axis extent of the similar curve at t = 8 x 10'6 sec, encountered in
Figure [7]. Also indicated on the same figure is the locus of off-axis
maxima in the z-profile of the pulse, both at t = 0 and t = 1077 sec. At

t = 0, the pulse is described by (193) and clearly the off-axis maxima in

z are all positioned at 2 o 30 . As the pulse propagates, however, the

peak moves slower than thz velocity of 1ight, as previously noted. The off-
axis portions of the pulse, however, have much smaller intensity and,
consequently, interact very little with the fluid. These portion§ of the
pulse will suffer no delay, and move steadily ahead of the principal peak.
One notices that at two thirds of the radial halfwidth of the beam, the delay
disappears almost completely. As mentioned above, the small squares locate

the secondary peaks present at t = 10'5 sec.

The phase front information presented in Figures [6]-[9] is an interesting
feature of the results of the computer solution. Since IE]| turns out to be a
rapidly varying function of time, it is of interest to attempt to understand
the mechanism responsible for the behavior of E]. In order to understand this
behavior, one must realize that the phase depends on the state of the fluid.

The state of the fluid given by the computer calculation is shown in Figures
[10]-[16]. Before these figures are discussed, however, it is convenient to
examine certain anmalytic estimates for the fluid variables. Such estimates
will allow insight into the behavior of E]. and, later, will facilitate the

discussion of the computer results for the fluid variables.

In order to describe the behavior of E]' it is useful to write the
electric field in the form

A
ot - =22

E = é;(r.z-ct) e c.cC. - (202)
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where
4(L)2 _4(ﬂ§)2
F o %o
€°§ 5 e e - ( 202a)
and
. eo-l )
1+ 2? oy (202b

where F is a slowly varying amplitude, " is the local density excess,

(p-po). and 200 has been put equal to zero for the present considerations.

Combining equations (202)-(202b), the electric field can be put in the form shown
in (162 ) with

A2 a2

-1
E]’ TF cos (kLz-;-go—p])] e 0 e
(203)
452 a2

[ € -1
E2 = | -F sin (kLz—BF;p])]e 0 e g

These expressions agree with (193) at t = 0 and offer a way to estimate the
behavior of E] at subsequent times. On the basis of (203) the nodes of E]
might be expected to be determined by
€ -1

cos (k2 2—%;- py) = 0 (204)
Actually, this expression should be modified slightly if one wishes to attempt
to get quantitative agreement with the computer solution. It is clear that
(203) requires E2 to vanish at z = 0 at all times. This is not the same
boundary condition which was used in the computer solution. Actually one

should use
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with (205)
. z eo-l . .
Y kL I -2——po Py dz' .
’zl’ t

The integrand in (205) should be evaluated at z' and t', where
c(t' - t) =2' - z.

Although (205) will be used in the future to analytically describe a laser beam
quantitatively, for the present (204) may be employed to gain insight into the
behavior of E].

It is clear from (203) and (205) that the mechanism responsible for the
behavior of E] is easily exhibited. To actually follow the behavior of E].
however, it is clearly necessary to determine the state of the fluid. In
particular, the density excess, o, must be obtained as a function of time and
position. In order to analytically describe the fluid for the time interval
and parameter ranges of the computer solution, the laser-fluid equations may

be simplified to

oT 9p —
1-~y1°%1  ac
P03t ", R vttt (206)
and
2
3P
1~ 2 .
| ;2'" u BOOVZT] (207)

where T] is the local temperature excess, T-To. One must recall that the
intensity, CEE; appearing in (206) is a function of time and position.
Integrating (206) from zero to t and combining the resulting equation with
(207) to eliminate T;» one can obtain
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2 -8(%)? z  -8()?
ot P o "o z-ct 0

It is straightforward to integrate this expiession and, although the details

will not be given here, it is clear that p, will have the form

- 8r?
2 r
n = (:—'5-1) e ° [F(z,t) (209)
0

so that p < P ON axis and there is an off-axis maximum in the density. In
: r
other words, there will be a pile-up of the fluid at a distance r = 7?

from the axis.

The temperature distribution can-easily be obtained by integrating (206)

from zero to t:

8 —-E"Z 2

- v

z2,0P ro (2 'B(E;) d

T~ ok, © I e = (210)
Po-v z-ct 0

A negligible term involving Py can be evaluated using (209) and has been
dropped to get (210).

Combining (210) with (204) the behavior of E, can be visualized and
studies analytically. Closed contours such as those shown in Figure [9] are
predicted and other qualitative features are correct. A detailed ccmparison
of this analytical procedure and the computer result is in progress and it is
now clear that striking quantitative agreement is obtained. This success is of

great interest because the analytic procedure, unlike the present computer
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solution, is not limited to 10'5 seconds.

5 sec will

The computer result for the state of the fluid at t = 10
now be considered. For this discussion, it is useful to keep several
characteristic distances in mind. Since the state of the fluid is governed by

the intensity profile
(ri2,t) = 3 /o0 ¢ [E[Z, (211)
I "E

rather than by |E| directly, the following initial parameters are relevant.
The full L -width of the z-profile

¥4

of P, = -2 -14.1 in units of Az = 0.45 km (212)
2 2
zz zo 3 IL aIL

At Z= p ir = zp i 5, ;2— =0 so that 3?' (2]3)

has extrema separated by 10 units. The full %--width of the radial profile

r
of I = £ = 90.707 ry = 141 cm (218)
2 2
ro ] IL
At r =g =50 cm, —==0, (215)
ar

so that 5;L-has a maximum. The maxima on opposite sides of the axis are -

separated by 100 cm.

The local temperature excess, T - To’ where To = 10°C is shown in
Figure [10] as a function of z at t = 10'5 sec. This curve is in complete
quantitative agreement with the analytical result shown in (210). The hottest
place in the beam 1ies on the axis at z * 33.3. Since the intensity peak is
at z_ = 35.3, it is clear that the thermal peak is lagging behind the intensity

P
peak. Since z, = 36.6 at this time, it is clear that the thermal peak is
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almost. exactly midway between the initial and final pulse centers. Thus
one finds, as expected, that the thermal peak propagates at velocity %- for
small times. This and other properties of the thermal profile are readily
understood on the basis of the following considerations. The temperature

responds to the heat deposited in the medium, so that from (210):

r4

T(z) - To = Jz (z -2 ) po . (r z',t = 0) Q%L . (216)

Due to the symmetry of IL and the fact that it is gaussian, it follows from

(216) that T(z) should reach a maximum midway between zp° and zp for small

times. Furthermore, the graph of T(z) - T, should be symmetric about its

maximum. Both of these features are evident in Figure [10]. Since the peak

moves much less than its halfwidth in 10°°

seconds, the integrand in (216)
is essentially constant. Evaluating IL(r.z'.O) at the midpoint of the

interval, one gets

zp-po o Zp-Zpo

T(Z) - TO = C * p'q IL(roz - _7'_0 t= 0) (2]7)
(o]

From (217) one concludes that the width of the thermal distribution should
equal the width of the intensity distribution. Indeed, one sees in Figure [10]
that the temperature distribution has width 14.1, which is to be compared

with (212).

The corresponding radial temperature distribution at z = 33, the
position of the maximum at t = 10'5 se., is given in Figure [17]. This curve,
also, is in complete quantitative agreement with the analytical result shown
in (210). The temperature has reached a maximum of more than 1000°K on axis

and the full width of the distribution is found to be 0.67 ro™ 134 cm, 5%
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narrower than the initial radial intensity width. One might have expected
the temperature distribution to be broader thar the intensity profile

because the large radial velocity of the fluid should carry some of the
deposited energy away. In fact, this effect may possibly be observed in

the following way. One might compare the temperature distribution not to the

original gaussian intensity profile, but rather to the %-width of the radial

intensity profile at t = 10'5 sec. This final intensity profile has a width
of 128 cm or 5% l1ess than the temperature width. The average of the two
intensity widths is 134.5 cm, almost exactly the observed temperature width.
This average may be the best measure, because the thermal peak is midway

between the initial and final intensity peaks.

The z-component, v,, of the fluid velocity is shown in Figure [12] as
a function of z. A double log plot is used which omits values of v, between

3 cm/sec and -10'3 cm/sec. This kind of plot allows negative values of

107
v, to be plotted below the "axis". The zero of the velocity distribution
occurs around z = 32.2, 50 the "center of velocity" lags slightly behind the
thermal maximum. From (169) one might expect to find

3IL

3T
V, ~ 57~ 30 (218)

so that the peaks in Figure [12] would be separated by 10 units according to
(213). Indeed, the peaks are found to be separated by 10.2 units. Furthermore,
since the temperature curve is symmetric about its maximum, (218) would suggest
that v, should be antisymmetric about its zero. This effect is certainly
observed in Figure [12]. The velocity distribution is delayed with respect

to the temperature distribution, but this symmetry property is unaffected.
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At the same value of z, corresponding to the center of velocity of the
z component, the radial component, Vs is plotted in Figure [13]. This value
of 2 corresponds also the the largest radial velocities, so that z = 32 might
also be termed the site of greatest kinetic energy in the fluid. The radial
velocity maximum is forty-six hundred times larger than the maximum axial
velocity. This effect arises because of the great disparity in the intensity
widths in the two directions. As a matter of fact

(v.) max z 5
r =4625 and 2= 9?%(')'10_ = 4500.

r
(Vz) max 0

The cdrve of Ve is forced to go to zero, as r goes to zero, by the boundary

conditions shown in (180 ). One notices, however, that the peak is located

at the distance 0.25 o from the axis, exactly the location of the maximum of

9l
SFL' shown in (215). Thus one finds
L 1 (219)
r-or T ar

as would be expected from (177)

Bringing up the rear in the sequence of effects is the derisity minimum

at z = 31.5. The density decrement -(p-po) is shown in Figure [14]. Using

(207), one might expect

2 2 .
3 3°T (220)
v A )

so that p and T will have the same z dependence.+ There should, however, be a

double time delay, since two time integrations are indicated in (220). The

i i tion F(z,t) shown in
One gets the same conclusion by analyzing the functio 5
(209? in a manner analogous to the reasoning employed to obtain (217).
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width of the density decrement is found to be 14.5, about 3% wider than the
0. =p
thermal and intensity widths. The maximum fractional decrement 59-—- ~

0
4x10°°,

The radial density distribution is exhibited in Figure [15] at z = 32,
the location of the density minimum in the z-profile. Again, a double log
plot is given so that both positive and negative density excesses can be
conveniently represented. This time a density pile-up is observed because
the fluid has been blown away from the axis so fast that a compression wave
is generated. The zero in the graph is at 0.36 ro right at the halfwidths
of the thermal and intensity distributions. Thus inside the thermal halfwidth
the density is depressed; outside the fluid has piled up. The radial density
profile shown in Figure [15] is in excellent agreement with that predicted

in. (209). For example, the zero observed at %}-z 0.36 is predicted to occur
o

at

L-L.oss.

o /8
Similarly, the location of the peak observed at %}-z 0.51 is predicted to occur
0

at

r.]

r, -2

Similarly, the ratio of peak height to valley depth is also correctly predicted.
As a matter of fact, when one takes the trouble to evaluate the function F(z,t)
appearing in (209), he finds precise agreement between (209) and Figure [15].
Thus, both (209) and (210) are in complete quantitative agreement with the

result of the computer calculation.

Figures [16] and [17] exhibit the parade of effects, 11lustrating
graphically the various delays, pulse shapes, and widths. Physically the
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delays make sense. First the beam blasts through, heating the fluid as it
passes. As explained above, the temperature maximum moves at %-and. thus,
behind the laser peak. A§ this temperature wave passes along, the fluid picks
up kinetic energy and the flow Velocities increase. The center of this effect
trails the heat wave, allowihg time for the fluid to respond. Then, as the
fluid begins to fiow away from the propagatiﬁg center of velocity, density
deficits are left in the wake and corresponding radial compression waves set

out from the beam axis.

Tp sutmarize the results briefly, in portions of the pulse where the
intensity is small there is very little interaction with the fluid and these
portions move without appreéiable distortion. The peak of the pulse, howe?er.
interacts fairly strongly with the fluid and the peak is delayed relative to
the center of the pulse. A parade of effects.ensues; the center and edges of
the pulse are followed by the peak, thch. in turn, is followed consecutively
by the thermal wave, the center of velocity, and the density waves. The front
edge of the pulse propagates without appreciable distortion, but strong phase
oscillations are set up near the peak and rapidly overtake the updistorted
front section indicating that soon the entire beam will be distorted to some
degree. The strongest instabilities, predicted in the linearized analysis of
Part II did not appear because they are generated by ripple with wavelength an

order of magnitude smaller than the mesh size used.

There is very little hope of obtaining computer solutions of the laser-
fluid equations except in the tightly limited regime reported here, unless a
different calculational procedure can be devised. Since, however, it appears
that a certain.amount of analytical headway has been made, there is reason

to believe that, with appropriate combination of analytical and computer methods,
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the beam can be followed for considerably longer periods of time. Effort is

currently being directed toward this objective.
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PART V
BEAM FED TURBULENCE

Many experiments have been reported for which theories assuming steady
state beam profiles, after initial transients die out, provide rather good
explanations of the principal features. However, that is probably true only
because these experiments are conducted at relatively low power fluxes.
Theoretically, one expects a time-dependent state of the system because of
the instabilities discussed earlier. Such instabilities are not observed in
practice becausé they cannot develop within the distances allowed for the
propagation of beams. However, alternate considerations for a beam of finite
cross section suggest that the beam may drive the fluid into a time-dependent,

or turbulent, state at powers which are not completely unreasonable.

It may be impossible to prove analytically that such a turbulent state
develops, because the investigation of hydrodynamic stability is very
difficult even for the simplest flows. However, an argument can be made from
dimensional considerations, an approach that promises to be very useful.
Namely, for the problem of a beam of radius a and power flux I passing through
air, it is possible to estimate a parameter W, which plays the role of an
effective Reynolds number for our problem. It will be shown that the parameter
W takes on values of the order of 30,000 for a beam with intensity I = 1 kilowatt/
cm2 of radius 1 meter. Since it is known that flows with Reynolds numbers
substantially lower than 30,000 are turbulent, the flows for the laser-heated

atmospheric path should also be expected to show significant time dependence.

Consider the equations of motion for the air, and the equation governing

heat transfer, which take the following form if it is assumed that the air can
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be assumed incompressible. (That amounts to dropping terms of order u2/v§.
where y is a typical flow speed, and Ve is the speed of sound. For the
problems under consideration, UZ/VE will be less than 10'5. and the incompres-

sible fluid approximation will be quite good.)

p(V-v)V=-vp-BT]p§+%-nv23+;L(n+n')V(V- v)
0 0

p(VeV)==(VeVp=pp(V-WT, (221)

p Gy (V- W) Ty mal + 0 (TT) + 8= In vy 4+ vy 240 (v 03

Assuming the Reynclds number is high, the inertial terms will dominate the
viscous terms in the Navier-Stokes equation. Thus, there must be a balance
between the inertial terms and the bouyancy forces, which implies that

pu2/a *’pBT]g. where p is the density of air, B is the coefficient of thermal
expansion, T] is a typical value for the temperature rise, and g is the
acceleration due to gravity. The pressure variation will be of order puz.
In the heat transfer equation, the convection term will dominate the conduction
term, and the beam heating will overwhelm the viscous dissipation, so that there
must be a balance between heat deposition from the beam, and convective heat

transfer, which implies that pC
3

p uT]/a ~ al. Combining these two relations

we find that u~ ~ cBazIQ/pCp . With that expression for u, we then define a
parameter W, which is expected to indicate regimes where steady flow and where
time-dependent flow may be anticipated. W is an estimate of the relative

importance of inertial terms to viscous terms in controlling the flow:

aup ®o /3

We—22=53— (ceazlg/pc )] (222)
n n P

10

For a beam with I = 10 ergs/cmz-sec. a = 100 cm, Io = 273°K and

a=3x10%cm!, W= 30,000.
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For many experiments described in the literature, the values of W are
much smaller, and thus one would not expect any turbulent fluid flow to be
observed. For example, in the original experiment of Gordon, Leite, Moore,

3

Porto, and lulhinner'y[]'q the parameter W takes on a value about 10°~, and in

the more recent experiments of Smith and Gebhardtgl7] W is of order 10.

The parameter W introduced here is different from the Grasshof number,
which is referred.to in some discussions of the convective flows set up by
the absorption of energy from a laser beam.llq In fact, the conceptual basis
for using the Grasshof number in a discussion attempting to explain the tran-
sition between smooth flow and time-dependent flow seems less relevant because
the Grasshof number appears to be more sensible when the thermal bouyant
forces are balanced by viscous forces. In the present discussions, the

thermal bodyant forces are balanced by inertial effects.

We are planning experiments to determine the critical value of W, "cr'
which determines the onset of turbulent convective flows for the geometry
appropriate to laser beam transmission. It is also our aim to attempt a
theoretical evaluation of this critical value. At the present time we can

only speculate that "cr may be between 163 and 104.[19] The theoretical approach
appears fairly difficult because the question of the stability of flows even
without heat sources has only been answered theoretically for very simple
geometries.[zo'ZI] The question of stability for fluids which are heated or
cooled appears to have been treated mainly for cases in which the fluid would

be motionless, and has not been explored for a problem 1ike the present
one.[ZI'ZZ] The first part of that problem would be to determine a steady-state
flow pattern for a fluid with a distributed heat source within a right

circular cylinder with its axis aligned at some angle to the vertical. For
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the case of a horizontal cylinder of infinitely small radius, the flow pattern

has been calculated by Yin,[23-24]

Unfortunately, however, that solution s not of great value for the
present problem because the size of the cylinder radius is a critical parameter.
Nevertheless, it is expected that Yih's solution will assist in obtaining the
asymptotic form of the steady-state flow at large distances from the laser
beam cylinder. (nce that time-independent flow pattern has been determined,
the 1inearization of the hydrodynamic equations for perturbations from the
flow pattern will lead to an eigenvalue problem, which eventually will yield
a critical value for W. Ostrach[zs] suggests that the eigenvalue problem can
be bypassed as the stability of fully developed natural convection flows can
be found by using the gppropriate velocity profile 16 the classical theory of
hydrodynamic stability. This assertion rests upon his analysis of the
stability of free convection above a flat heated plate, where instability
first appears for a Reynolds number of 283.

Above the threshold for beam induced turbulence, governed by Ncr’

general arguments[26] lead to a size for the smallest eddies, a(Ncr/N)3/4.

For a 1-meter beam, if Ncr should be about 103. then the eddies might have
sizes as small as 7 ¢cm for a power flux of 1 kN/cmz. The associated density
fluctuation would then be expected to result in considerably increased

scattering of the beam.

The arguments presented here show that thure are substantially more
important sources of instability in the laser-fluid system than those discussed
in earlier linearized analyses. It is felt that these fluid instabilities will
b; enhanced by their interaction with the scattering of the laser beam, because

of the general result that instabilities in fluids result if the heating of
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the fluid is greater in those regions where the density of the fluid is

greater.[27]

At the present time we can only outline the general nature of the
effects to be exnected above a critical power level. Much additional werk

clearly needs to we done, both of an experimental and theoretical nature.
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PART VI
LASER RADIATION IN A MOVING MEDIUM

In order to consider the effects of forced fluid flow on a laser beam,
the equations for the laser-fluid system will be analyzed for a two-dimensional
steady state situation. For simplicity, consider a uniform slab-shaped laser
beam of width,a, in the y-direction, of infinite extent in the x-direction,
and propagating in the z-direction. If there is a transverse motion of the
medium in the y-direction, Jue to wind or to convection above a heated surface,
an asymmetric distribution of iamperature and density will be generated in
the beam region. This asymmetry leads to a curving of the laser beam toward

the source of the fluid motion as shown in Figure [18].

This $elf-curving or "wind prism" effect can be explained by the follow-
ing simple physical argument. Consider the case of fast flow, where flow
transit time through the beam cross section is much less than thermal conduction
times. [The flow is not presumed, however, to move at speeds comparable to the
sound velocity in the medium.] As the fluid passes the beam cross section, it
is heated and becomes less dense, so that the density at y = a is less than at
y = 0. Thus, the index of refraction at y = a is less than at y = 0, so that
the beam is effectively moving through a prism and will bend toward the negative
y-direction. As this wind velocity decreases to zero, the wind prism goes
away, to be replaced by an effective convex thermal lens. In the absence of
wind, thermal conduction will lead to a temperature distribution symmetric
about y = %u The hottest place will be in the center of the slab and the
density distribution will have a minimum there. Thus, the index of refraction
has a minimum at y = %-and the beam is effectively moving through a defocusing

lens. The beam will, therefore, tend to spread out or "bloom" as indicated in

Figure [19].
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Akhmanov, et al. .n'8] and other gv‘oups[“"'17'28'31 ] have predicted
and observed the phenomena of thermal blooming and self-curving in the presence
of a wind. These two effects will be considered simultaneously here for the
simple slab geometry and a formula for the development of the beam profile
will be given which included both types of behavior. The slab geometry will
overemphasize the self-curving effect slightly, compared to a cylindrical
beam, but qualitative features and order of magnitude will be correct. The
results of the present model will be compared with a cylindrical beam experiment
at the end of this section and reasonable agreement will be demonstrated. In
fact, this comparison will serve to illustrate the importance of thermal

conduction in the description of a "blooming wind prism."

In order to relate the two effects and to make quantitative estimates
of the curvature of the beam, equations (25a) - (29) for the laser-fluid
system will be speciajized to this case. A cartesian geometry is used with
the fluid variables T and p being functions of y only, and the fluid velocity
V= v(y)ay being a function of y only and directed in the y-direction. These
variables are also taken to be time independent since only a steady-state
analysis is to be attempted. Similarly, the electric field will be taken to
be of the form

. a
1(th-kLz) e- 72

e d ~N
E=E(y)ee + C.C. (223)

where € is a polarization unit vector, Wy and kL are the frequency and wave

number of the laser radiation, and the factor

e

4

rojR

included to allow for damping consistent with the damping term in the wave
equation, (25a). Substituting (223) into (25a), an equation for E(y) is

obtained:
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2
2
dE | 2-“1)5 (224)
2 (k'- 2°

where, by (25b),

€ = EL + ez EZ (225)
2 . . .
and E® is easily computed from (223):
2= 3 EAy) 2 ( 226)

To further describe € as a function of p and T, the Clausius-Mossotti relation

will be used as shown in (25¢):

p(a—e)T v lel) (e42) (3—€) =0 (227)
(o]

Since, for air and many other fluids, € is independent of T for reasonable
temperatures, (227) can be integrated at once to give
_ (eo+2)po + 2(eo-l)P

(eo+2)Fb - (eo-])P

(228)

€

where €y = [eL + eéEEj and Py are the values of € and p evaluated at

y = 0. This relation, also, will be called the Clausius-Mossotti relation.

Now, if p can be found as a function of y, then (228) and (224) can be
used to compute E(y) and the ray methods of geometrical optics can be used to
describe the deflection of the beam. From the wave equation, one obtains the
following relation between the gradient of ¢ and the radius of curvature Rc of

the laser beam

(229)
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where Vln is the transverse component of the gradient of the index of

refraction. The deflection of the laser beam, therefore, can be described by

the relation

/e (230)
where y is the séattering or deflection angle shown in Figure [18].

In order, then, to compute p, the Navier -Stokes and heat transfer
(conservation of energy) equations (26a) - (27b) must be solved along with the
fluid continuity equation (28) and the equation of state of the fluid (29).

Specializing these equations to the present situation, one gets:

NAVIER-STOKES

2 Z 2
dv _ _dP vy d7v =1)(e+2) |1 dE e-1E-d
pv@---w+(hh);;§+L¥_l[iar+TTE$] (231)

HEAT TRANSFER

T _y-1, do _ intn’ (dv)z+ c 47, ol ;2

Vdy "8 Ydy~ TeC, \dy oCy g2  oC,
1 Ifsc) dp, f3x) dT |dT (232)
o (ap)Taf *(‘a‘r‘) dy | dy
o}
FLUID CONTINUITY
pv = pyV, = constant ' (233)

EQUATION OF STATE, IDEAL GAS
P = RpT (234)

where Po and v, are the density and wind velocity at y = 0 and R is the gas
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constant in units of ergs per gram per degree. To obtain (231), the Clausius-
Moséotti relation was used and the dependence on gravity was dropped. For
transverse winds, the force of gravity would act in the x-direction and wculd
destroy the simplicity of the present model. For "winds" caused by rising
columns of air over heated surfaces, however, gravity could act in the y-
direction and would cause no essential complication in the present model. For

simplicity, the gravity term will simply be dropped in the analysis given here.

Before proceeding, several additional simplifications will be made in
(231) and (232). The terms involving the viscosity coefficients, (2n+n'),
are very small and will be dropped. Furthermore, the terms involving deriva-
tives of the thermal conductivity x are small and will also be dropped. The
coniinuity equation, (233), and the'gas law, (234), can be used to eliminate
P and v from (231) and (232). Thus, the density and temperature are described
by the two equations:

(p.v )2 2
o 0 d e+2 1E"d
= R _(.5_). .(__%_(_). + ..p_ a% (235)
and
2 2
. Tdo_ x dT , ac/e E
0 dy (v-1) VO o dy _pocv dy2 + pocv (236)

where, in order to obtain (236), the relation

- %(%%)p - % ' (237)

ko)
11}

following from (234), was used.

Inspecting (236) for the characteristic times for thermal changes,
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one observes two characteristic times: Tes the thermal conductivity time,
and Tes the flow transit time through the beam cross section. These times

are conveniently taken to be:

Ca"p
T = yv_o (238)
K
and
-

0
For convenience, these time scales will be compared to the much shorter sound

transit time:

d a
Te = o— = (240)
S Vs ART

where Vg is the isentropic velocity of sound at temperature To. It will also

be convenient to introduce the following dimensionless parameters:

(241) |

=X
¥ =2
8 = %;-= tempgrature relative to temperature at (242)
0 y-=
g =-§— = density relative to density at y = 0 (243)
()
po‘p . .
f=1-g = v relative density decrement (244)
()
Using this notation, (235) and (236) can be written in the form:
d(d) =2 2
1597, 1 d(ge) . (e=1)(e+2) |1 dE® | e-1 ES dg (245)
2 dw 2 dw 3 2 2 dw 3 g dw
TF Yig Po?

and
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Q
Y

(246)

0
[= 9
ot

Now, the general strategy will be to solve (245), (246) and (224)
by iteration, but only one iteration will be made. A simple shape will be
presumed for E(y) and then (245) and (246) will be sclved for © and g. Then,
in principle, one could solve (224) for a new E(y) ard continue. However,
the first iteration for 8 and g allows evaluation of Ve, so that (230) can
be integrated to produce an estimate of the beam deflection. The initial

shape presumed+ for E(y) is

E, = constant, for 0 < y < a

E(y) = (247)
0 otherwise

Then, inside the region 0 < y < a; i.e., 0 < w< 1, the derivative of E2

with respect to w is zero in (245). In both (245) and (246), the replacement

- 12 a2 i &
B¢ = L ES & - = (248)
JE; c JE—BC

can be made, wnere IL is the power per unit area in the incident laser beam.
For convenience, now, the following additional time scale is introduced.

r
cvpoTo = cvpoTo - ‘vpoTo
-0.Z

(249)

TA . = ~
ac/e ¢ ol ole

The time.TA. is characteristic of the rate of absorption of heat in the fluid.

+Such a flat profile will minimize the thermal blooming because none of the
rays will cross in the first iteration. Subsequent iterations would produce
crossing rays which would keep the iteration procedure from converging.
Crossing rays are, of course, not allowed by the wave equation.
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Now, (245) can be integrated in the following way

é—(%-])+—]—2—(ge-l) j {e]es2) (1) 42 au -

YTg 3/e_ cp 2
1 W
= L I de ( d -
= ——y e=1) dw =
3JE; cp,a” ‘o dy 3&
a -il. I d(e-])_ _.9. dw
6/, cpa- o 99 W
0
————7f [(e-1) ]
= e-1 (250)
5/_ Cp,a
From (228), however, one gets
38 g\2 2
2 _ 0 ~ ~ 2 2 3
(E-]) = ('FF‘;E) [3Bog('|+Bog)] 980 (g + ZBog ) (25])
where
B, = —-;- % very small for air (252)

Combining (250) and (251) and solving for 8 produces

1_\2 T 2 3
I I

where TD is still another characteristic time:
) 2/ cpal
G2

(254)

This quantity, Tps characterizes the direct interaction of the electromagnetic
field with the fluid and arises from the electromagnetic stress term in the

Navier-Stokes equation.
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Equation (253) gives the temperature as a function of the density and
will be useful in integrating (246). If (253) is used to express the ratio

Q-as a function of g, then a first integral of (246) can be obtained immediately.

:hen (253) can be used to eliminate 6 in this first integral and a first order
differential equation for g results. Continuation along this line is largely
superfluous, however, and leads to implicit transcendental expressions
connecting p and w. It is useful,and far simpler, to agree to study the
situation for the case in which the density change is small from y = 0 to

y = a.

For the case that g = 1, the relative density decrement, f, defined in
(244), is very small and it is useful to write equations (253) and (246) in
terms of f and work to first order in the density decrement. Thus (253)

becomes

8= 1+Qf (255)
where - 2 : 2

Q= 1-y (.T.f;) -2 (;.-;-) (1438,) . (255)
Then, using .

g': %;%f =1+ (Q+1) f, (257)

equation (246) can be integrated immediately:

g-gi-&h—lf A + A (258)

where A] is a constant of integration. Integrating again and taking the
boundary conditions f(0) = 0 and p(1) = Pys where P is the density of the
fluid at y = a, produces
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Po~Py Tg M TEW
f=]2 - + (259)
R ELEDN BT L) '
where
(s ¢ Ts :
o =\==] +2\=>] (1438) (260)
F D
and
T
_ c l-o
AZy —F- o (261)

Then, combining (251) and (259) the square root of the permittivity is approx-
imately given by:

- 3 ]+Bo
/E*]"'EBO H'ZBO W-f (262 )
and
- d/e df dw _
Ve HF dwdy

38 (1+2B ) T reW ) Po=P1
et ()25 [ ) ) o

Since this derivation has proceeded under the assumption that the density
PP
o1

decrement, f, is small, the first order term involving is small compared

o
to 1 and will be dropped as will terms of order Bo when compared to 1. It is

convenient now to introduce the notation:

~

T T T
F_.pE -peoz E
= 4 T =fe YT (264)

where the dimensionless powerapis given by

azaI

PE _u?I:L and ;5 e %2 ( 265)
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The deflection of the laser beam can now be given iq the form

> Y
w. &P [ (oee)
In order to analyze this expression for the curvature of the laser beam, it is

convenient to rewrite o in the form

v \2 31
o= (_0) +—t— (267)
Vs /:% P € Vg

For propagation through air at 10°C, the two terms on the right hand
side of (267) are both of order 107 when v, ¥5 (knhr) and I =1 (Wi/cn’),
so 0 and YO can be considered small compared to 1 for velocities less than

50 (km/hr) and powers less than 100 (W/cm®). From equations (261), (238),

[ -0 YT _[ 1-0 chpo

so that for wide beams or fast winds, the conduction time is very long, com-

and (239), one has

pared to the flow time and A will be very large compared to 1. Under these
conditions, the ratio of exponentials in (266) tends to be smaller than %-.

so that most of the rays bend into the wind. For large enough y, however, the
ratio of exponeﬁtia]s is greater than %-. so that some of the rays have
negative curvature. Thus the downwind edge of the beam bends in the direction
of the wind. Therefore, pure beam curving with no thermal blooming will never

occur.

Physically, this is easy to understand. The hottest place and, hence,
the minimum of the ‘index of refraction, must lie inside the beam region. On

the two sides of this minimum, the rays will bend in opposite directions. The
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faster the wind, the larger X will be and, herce, the larger y must be before
the curvature changes sign. In other words, the wind can blow the hottest
spot away from the center of the beam, but it can not blow the hottest spot
entirely out of the beam. The position of the minimum of the index of
refraction is easily obtained by determining the value of y for which the

right hand side of (266) vanishes:

Yy A - =A
0. .log2 ,Jog (ice ) (269a)
1 - 192 for arge (269b)
sl A for small A (269c)
2728 S

In particular, for very small A the minimum is at the center of the beam,

whereas, for large A, the minimum is very near the downwind edge of the beam.

As the wind velocity goes to zero, equation (266) reduces to

a) P
w DT Ny (270)
dz}) _ 2a (l-yo 2 a
v =0
0
which is symmetrical about the center of the beam as would be expected for pure

thermal blooming. The rays at the edge of the beam have the maximum curvature

(eo-'l)P
2a (1-yo

g, = max dy
B y |dz

= -]2- (2n)

v°=0
In terms of this maximum curvature for pure thermal blooming, (266) can be
written in the form

y
A3 '

r
1 e }
EE=2_'_“— E (272)
SRR

Clearly £ is a monotonic function of y, giving the largest positive curvature
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aty = 0:
S L.
Emax = [A B ek_]]EB (273a)
m(1-3) g for small (273b)
z% Eg for large A (273c)

As may be seen from (273a), Emax decreases monotonically with the wind velocity
and is less than EB if there is any wind at all. Thus, the wind blows the

blooming rays back into the beam on the upwind side of the beam.

The minimum curvature; that is, the largest negative curvature, occurs

at y = a:
A
= e ]
Em'in = -2 [?‘--]- - x] EB . (274a)
m- (14 %) gy for small A (274b)
m-2 (1 - %) £ for large A (274¢)

Thus, it is clear that |Em1n| increases monotonically with the wind velocity
and is greater than EB if there is any wind at all. The effect of the wind on
the downwind side of the beam is to blow the blooming rays farther out of the

beam.
Comparing (273) and (274), one finds that

Emax = Emin = Smax * Igminl = 2% (275)

regardless of the wind velocity. Thus the wind has no effect on the size of
the spread of curvatures created by the thermal blooming. For v = 0, this

spread is from &g to -Eg, whereas for extremely fast winds, the spread is
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essentially from 0 to -ZEB. Thus, the curvature spread can not be decreased
by a wind, but it can be translated by, at most, half of its extent. There
is, however, a very dramatic shift in the fractions of the power being
scattered into the various curvatures. This arises because, for large A,
the distribution shown in (272) is very flat as a function of (§9 for y < Yo

For A = 100, for example,

<

0.0137%30 for 0<¥<z? =0.9.
B
ti

Then, for y > Yoo the curvature becomes negative and falls rapidly to

= 195,
ég-wol 0.99

at y = a. The net effect, therefore, is that about 96% of the power goes

off with curvature £ ~ 58/50 and the remaining 4% blooms strongly out of the
beam. For a non-uniform beam profile, the conclusions are qualitatively the
same, but the distribution is no longer monotonic as in (272), so that some of

the rays will cross.

One of many ways to exhibit the nature of the scattering distribution
given in (272) is to show the scattering cross section for scattering of power

into the various curvatures. Thus, one can define the cross section

. laser energy flux scattered into range dg
ap(g)de laser energy flux density

The quantity p(€) is the fraction of the laser power scattered into curvature

1

o(g)dg

(276)

"
P
ol
\./.
o
a2}

£. The distribution p(£) is normalized to unity:
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g g
max max 28, = AE_ .
. e _ 1 B min _ 1 A _ :
l P(£)dE [ ZEHE "X log Z o ) loge" =1 (277)
Emin Emin
where £ . and £ are given in (273a) and (274a). The fraction of the power

being scattered into negative curvatures is

; fewl ) ., o0

E . A
J KE)dg = %— log {1 + 25""" =1 - % log el
£ B

min

zlgg—)‘- for jarge A (278)

The distribution p(¢) is sketched in Figure [20] for small wind speeds.
The extreme values of the monotonic distribution are given by
by
A
&g PlEmax) = "3

and (279

_l-e"‘

e Plenin) =~
As shown in the figure, the déstribution is sharply enhanced at Emax‘ even
for A = 3. Because of this sharp peaking of p(£) for even very slow wind
speeds, the thermal lens-wind prism effect may be pictured as in Figure [21].
At each point in the beam path .the beam is essentially passing through a wind
prism with a small strongly defocusing thermal lens perched on the downwind
vertex of the prism. As A increases, the half-angle of the prism decreases
rapidly and the blooming lens increases its defocusing power, but shrinks
rapidly in size so that only an infinitesimal portion of the downwind edge of
the beam is affected. As the wind velocity increases, both the curving and

the blooming effects decrease as indicated in equations (273c) and (278).
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—— , for example, with a =1 cm and IL =

one has, from (268):

2 vo
0

A= 1400 a * 1400

2

-

r
so that at a given point in the beam, about 0.5% of the beam is affected by

the thermal lens. The dimensionless power shown in (265) is

P> 0.083 a2 ~ 0.083

-1

where the values: o * 3 x 10'6 cm o, k* 2.5 103 ergs/(deg sec cm), and

T, ¥ 283°K = 10°C have been used. The blocming edge curvature is then givén
by (271):

e~

-4
£ © 70— (0.043 a%) = 28X 10 (0,043 a) = 6.04 x 1076 a =

% 6.04 x 10°°

so that, from (273c),
10 ko

~ -9 hY‘ ~ -9
Emax - (8:64 x 107°) a Voo 8.64 x 107" .

Thus, after the beam has propagated 1 km, it will have an inclination of

4

the order of 9 x 10" ' radians = 0.05 deg. For comparison, without the wind

the pure thermal blooming would have produced a 70° divergence of the beam!

The ratio of wmax to WB is

-9
8.64 X ]0- = ].43 X 10'3
6.04 x 10

so that the wind can play a significant role in holding the beam together.
The fraction of the power lost from this beam in 1 km is roughly

2
P _-P(z) En2
0 = -0z ] B
—r—o ~(1-e )+x109-—a

2 (1-e03 4 1-}3-5 log [6.04 x 10%] = 0.258 + 0.008
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Z

so that the majo; loss of puwer arises from the damping factor e %% in the

ttansseing®ance of the 10 % wind.

It is possible to compare the prediciions of this section with
experiment, using the nice results of Smith and Gebhardt.[]7] The beam of‘
a 20 watt cw CO2 laser operating in the fundamental TEMoo mode was passed'
through an enclosed, recirculating wind tunnel with a 100 ¢cm optical path
length and a variable wind speed from 0 to 500 cm/sec. The absorption of
the air was increased more than a thousardfold and was controlled by the
addition of varying amounts of freon-12 (CC]ZFZ). A vertical optical path,
transverse to the wind direction, was used to minimize the gravitational
%lbeam diameter was 0.4 cm at the tunnel entrance
window and, in the absence of thermal distortion, the %-diameter was 0.6

convection effects. The

at the scanning detector which was located 20 cm from the wind tunnel axis
window. Of course, the experiment was performed with a cylindrical beam,
but one might expect to get semiquantitative agreement from the present slab
beam model, particularly if one concentrates on the shift of the beam peak

into the wind.

To consider the predictions of the slab beam model for the experiment
of Smith and Gebhardt, one can use equation (272). A ray initially at height
y will have the trajectory Y(y,z), where

% = -tan y % -y. (280)

Differentiating again and using (272), one gets

2 -0z
d% . dy - {-f(y) e for z < L
dzz dz { 0 for z> 1L (281)
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where L is the tunnel ieazth {100 cm) and
A
1 e @
f(y) = 2y - —X—] . (282)
e -

Integrating (281), one has

dY _ _ fly) . 3(] - e forz <l (283)

dz o (1-e° for 251t

Another integration produces:

Y(y,z) =y - f—(%l[(l + al) e'aL -1+(1- e'aL) az] for z > L (284)
a

In particular, for z = —g-L = 100 cm + 20 cm for L = 100 cm, the height of the

ray at the detector will be

= =< - ———glal) |5 - 5— 285
a a a 2, A
where
g(aL) = [l + (% - Elf) (] - e-aL)] ]
The correspondina intensity at z = -g— L is
“eal -al
I e I e
Iy, & 1) = =0 = 0 (286)
57w N
oy 6 ZEBaL Xe @
z=¢ L 1+ —3 g(aL) )
o a e-1

The peak in this intensity distribution occurs for y = 0 and its location is
determined from (285) to be

Y 2t al

oo %t oyl

5 7 g(aL) = (287)
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This relation is conveniently put in the form

Y 2t 0l
e(aL)52=-:%;-[1-§(1-%)][%-e—,{5] (288)

where

y 1 (3-0)- o)
alat) = ghilf - - qUERA R (289)
5 al

In order to compare the shift of the peak with the results of Smith and
Gebhardt it will be necessary to put numbers into (288). The numerical values
for the various parameters, appropriate for To = 10°C are shown in Part II’of
this report. The width, a, of the slab beam will be taken to be 0.4 cm, the
% diameter of the experimental beam. The 20 watt beam used would have a
"uniform" transverse linear density of 20 watt/0.4 cm so that IL will be taken

to be 50 watts/cmz. Then, in cgs units, one has

chpo)
= = >~ /6%
A ( K av, (0.806) Yo ¥65 Vo

2 .
a~al
P=—L-1.186 o
Kkl
0
£, = [4 02 x 10‘4] ol
B .
2ol ,
—— = 20.12
o a

Thus, for the experiment under consideration, (288) can be written

Y
-6(aL) -2 = (9.95) | p— (290)
3 &y, My, |
e -

In Figure [22] the function G(aL) is plotted versus (oL) and, also,
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- G(aL) ;f » the RHS of (290) is plotted versus (6;0. Data given by Smith and
Gebhardt for oL = 0.14, 0.53, and 1.0 are also ind?cated on the figure. One
notices that the data for various ol does not all lie on the same "universal”
curve as suggested by (290). Thus, as expected, there is some difference in

a slab beam and a cylindrical beam. The important feature to be noticed,
however, is that the order of magnitude of the predicted effect is correct

and the "saturation" of the prism effect encountered by Smith and Gebhardt is
predicted by (290). It would certainly appear that thermal conduction effects

can account for the saturation of the deflection and that the other explanations

suggested by Smith and Gebhardt are, perhaps, unnecessary.

In Figure [23] the intensity distribution of the laser pulse at the

P | cm
o 2 sec °® 10 sec °’ and

for Vo extremely large. One notices here the rapid transition from the

detector, determined by equation (286), is shown for v

uniform spreading, due to thermal blooming, to much narrower distributions,
peaked on the upwind side, as the wind velocity increases. The qualitative

features of these curves were, of course, already illustrated in Figure [20].

This analysis has been undertaken in order to estimate the relative
importance cf thermal blooming and'wind curang. Certain qualitative features
have been discﬁssed and perha;;-;;;e iﬁsight has been achieved. The approx-
imations made have been rather strong and cylindrical beams and non-uniform
beam profiles have not been properly considered here. These matters are
currently under study and results will be presented at a later time. The
approach to steady state and the usefulness of working to first order in the
density changes is also under study. There are difficulties involved in

asking for steady state solutions I:mland the effect of a wind on such matters

must be analyzed carefully. It does, however, appear that blooming in the
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absence of a wind is a quite serious problem if one wishes the beam to
retain its character over long distances. A fast wind can, apparently, help

considerably to alleviate the thermal blooming.
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APPENDIX A

Computer Program for Power Threshold for Instabilities

One can show from egquation (68) that the threshold power for

an instability lies near k=0.0lcm~l. A search was conducted for

various v with k fixed at 0.0lcm~l. The power threshold was then

located at v=(8.45x10'2)'k and found to be P.p=312ergs/sec.

In this computation the following notations have been intro-

duced into the computer program:

S :

R

B(6)

ROOT(5)

DET

DCROOT

k

k3

Coefficient of the Sth order polynomial obtained from (68).
The roots of the dispersion relation.

Decrement of the power.

Subprogram for the calculation of the roots of a
polynomial.

Following is the computer program for this computation.
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HCHENSPPIIC  NRT (NS [HA(MI S
TNCL MM PO ROOTEE ) RONGEFI F2TAFAGFS4TF6,FT,08,FL CPLXLLIG) 3
H=).13 VS=SNRT (L 1T7%19(8
DCRODTE PROC (A, HACE JRUNT, IGHK PEGENT §
/ATHIS 1A A SURRODYINE FNR |
THE RONYS OF A COUBLEX POLYNOM(AI OF DEGREF LESS THAN NXY WITH 16
DEC (AL OIG (TS ACCHRACLY 1N STORAGE ¢/
NX'1e6 3 ]
DUL CALGL 220,20 4220723H24HI(XL24YLAN2,G2,FLOWFIL,FZ22,RONT)ISI
DUF &Y REAIHTLALL crLx 1ol
\F All(u,o YHEN N3 PUt FILE (SYSPPINT) LIST (PLEADCHG COEFFICIENT )S 21
RO IN NCPOOTY L FXIT: FHDS IE N D= HXY | W < 1 THEY DAY PUT FILE 1SYSPRINTI
LISY (PEGPEC DOF POLYNDMIAL )N NCROOT 1S HOY RETYWERN O AND NXYY);

EXUTS ENDS :
NR=n; M=Mels REGEN = A .

S1t 20—, Jimles 227,05 H2x=1,% X122-455 D2=.5% nn (=M T | RY -1

IF AN G=.0 YHEN DNG HRaNReCS RONY (MR (=.03 ENY: FUSE GO YD ST END ¢
STIHN=)3 (F WL < 2 THUN 6D TO $253 F1SE (F NN=2 THEN DO3 Z3=<A(2)/A010(8
NR=MR+13 PONTIMPLI=733 6N YO S255 LMOE FLO=A)NH{=-A(NN=1)+AINN-2);
FRYmACRNUSALIN- LN #ACHN=-2) % F22=ALH00E HUN=NN-1§

Q32 G2=022%1Y1L2¢4021=F210N24*24F QY| 2%%);

BUF) 21562 4SANT(G20%2- 6.*!lztn?¢x19ﬁivZOOXl?—rZItnzorzzli.
BUF(3)=2,¢02-TIF1203 (F ARSIBUF(311 <= ANSLODCL200 THFN 1F ARSORUE) 200

€ 1oF=10 YUEN DIV XL 321, 3H3=H256N T0 S1ASFENDICLSE DDIBUFLA(=NUE)2) §
GO TD S163 Cads CTLSE BUrtat=RUFL3L;

S102 XLA==2, 80 22402/0UF(4) - H3I=XL.3¢1123

S13: 23=143¢225 1F ARSIHAZZ3L ¢ ACC TUCN GD TN S19% ELSE FlO=F21s s
FIl=F123% .
S140: BURLI(=1.3 F22=ALNNSL)S DN (=KNY YN L RY =13 BUF((I=0NF1( (%223
F22=FZ240Nr01(¢AL L1 FNNS IF ABSIFI2/F71) € 10, THEN 6N YD SI0

CLSE XL3=XL3/72,% HA=XL3ISH?: 23a=H3+225 6N TO S140;

SI18: H2elt3: Xt2=XL3: 23=2(% I(=]23% 22:=13% D2=1,4¢XL2% 6N TD S3%

S193 MPeMD4]] POOTINRY=2%: 1F MR ¢ N TUEN DO DN (=2 TN NWG
ALEI=AUI=1 v (N e ACED S FNDS M=NNG G0 ST ENDG ELSES

$?25¢ A=RUGEM; (F 1CHK=0 TJIEN RFTURMS CLSE REGEN=.D*A; REGEN(YII=1.38
REGFUI2 ) e=PUNTIILS DO K=2 TO N3 "D J=Kel TD 2 RY =1¢ PREGUMIJI=REGFN(J) -
ROAOTIRI*PEGEHIJ=1 (3 FRDS CNDE REGEN=A())PHEGEN ENY DCRONT

11=1 ' a

S=, 013 PL =100.5 NET=100.3 RCY ¢ DN KA=]1 TO 105 PL=PL ¢DET

no JA=-5 TN 0%

ReBeANE=-50S¢JAYS /2T E¢10¢ .

Filzs—He0  4T858573 [ 22~( 1750C9¢S5%42 5 [ 3=HE), 5605 0¢SS4

Fhne) 6,FLOCS*RIVO, B30 3

FSzQ ,F20¢((NAS(302=T,14075F=-98S5304 ) aN$2, TE142R*S=2,N25ET
FOR-6,34TC=153Se824PL % FTle)=UEB,6NTC~042,54C~58StR(ES¢éaP L

FRx) HEY, 4420 34RES- 1, QD4FHESEED 1S 2¢P Ly FOue=WX2,9502E (3¢Sea4¢pL

Bll)=1e: RU21sF1eT45  BLAEF2¢F14FA4E54F 6

BIAV=FIOFSer2¢FL4FI4FE TS MISI=F2CF5¢F30F4erN:  DLA)=FAIRFS 19}

NA=S5 ICHK=0: CALL DEPNUT (NeNAL 1. =10, RNNT , (CHK,RG) §

PUT FILE (SYSPRIKTE FOUT IPLiSoJAGRL ISKIPIINGEN1L04):F 100204 FI10) 120,100 10
. PUT FILE (SYSPRINTU DATA (RODT (4
NN JJ=1 TO % IF (HAGIRDOT(JII() <€ O THEN DNSTF 1123 THEN DO

PUT FILE ISYSCRENT) ENCT IPL) (FI1L0440D5  GN TD LAY ENDS
EBSE AN:  (1=(1¢1%1 PL =pL=-DET; DET=0.,1¢0LT: GO TO RETY END;  ENOS

ELSESEMDS - ENDF ENDS LA 3 ENQ%
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APPENDIX B

Difference Operators

For the computer solution of the laser-fluid equations
described in this study, the differential equations were
converted to difference equations. In order to minimize trunca-
tion errors, very accurate seven point difference formulae were
used to represent the differential operators. These formulae are
somewhat troublesome to construct, but a useful procedure is
described below. At the end of this appendix, a few of the
difference formulae used in the computer ar.alysis are listed.
Definition: The n point interpolation polynomial (abr.NIP) of the
function f(x) in terms of the points X1sXgr oo oXpo is denoted by
{f(x)}, and is a polynomial of order (n-1) approximating f(x) in
the interval [x;,x,]. {£f(x)}, has the property that

{£(x)} =f (x4) for i=1,2, ... ,n (B1)

-
n'x=x;

and is explicitly given by the Lagrange formula

_I‘P. (x)
fg(x) =" Lt (x,) (B2)

J’°¢i(xi)

where

Pj (x)=(x=x;) (x=%;) oo0 (=3 ;) (%= ,) ... (x-x)) (B3)

In other words ¢1(x) is the product of all factors of the form
(x-xk) except that the factor (x-xi) is omitted. For convenience

the notations, based on (Bl),
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(£00) |y = (£} p=f () = (B4)

will also be used.

Definition: If 2 is a differential operator and f(x) is a suitably
differentiable function of x, the n point difference quotient
(abr.NDQ) representation of‘i, denoted byk(f}h'x, is defined by

the following relation:

() f(x)=L{f(x)} o x=y-L{f(y)} (BS)

The subscript y on (EL'Y merely indicates the point at which the
expression is to be evaluated. As in the case of the NIP, the list
of the n mesh points, X ! is suppressed in the notation. For
onvenience the notation

{i}n,xk-{ﬁ}n'k where k=1,2, ... ,n (B6)

will also be used.

The NDQ's of the operators (%;)m have the nice property that

{£(x)} = “‘;.(xz)_{djj} n,yt ¥ (B7)

for any x and y in the interval [xl,xn], since the Taylor expansion
of any polynomial about any point produces that same polynomial.

As special cases of (B7), one has

- = s ) ;
£=E(x,) = b Y) S LS } ey =z i) e I gy (B8)
J=0 ! S T J=0 j: dx " .

for any i and k in the set 1,2, ... ,n.

Now, by combining (B2) and (B5) (or by inverting (B8)), one finds
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()" f(x)= (—) {£(x)} -(—x) Pi(x)

ax’ i=1 ¢ (x y
n n, n, Y. (x) 3
=.z ] z °°* .z ‘ptx ).(x_x )-.T(x-x ) (Bg)
i=1l jl=1 Jm=1 i1 1 In
n
where the prime on 3§ indicates that jk#i and jkijk, for k#k’.
] =1 .
Jk
Now (B9) can be written in the form
d n
{ } f(x)= 32 A; (x)£5 where
X i=1
n n, P
A (x)= g eee 3 —2ilX) 1 (B10)
Ui o1 4 @, (x,) (x-%, )°°° (x=-x, )
1= Ip=l 17 1 Im

Thus, if one agrees to use the NDQ as his approximation for a

differential operator, then (B10) shows how to express the mth
derivative of f(x) at the arbitrary point x in the interval

[x.,x,] in terms of the values of f(x) at the prescribed mesh

1
points X, . Actually (B10) is somewhat more general than required
for the computer program described in the paper. For the purposes

of this program, only the following special case of (Bl0) is required:

d o $ Y=
{E;} fi= £ Ay if; where i,k=1,2, ... ,n and
n,k i=l
. (%)
n,,,. n k
BixTs 2 : E; ¢ t ) (%, - ).}.( -x: ) (B11)

Formula (B10) or (Bll) guarantees explicit NDQ representations
of any differential operator L and shows a way to compute it.
Although & great deal of computation remains, even with formula

(B11l), at least the work is straightforward. Clearly, the
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definitions and procedure shown here are trivially generalized
to cases with more than one independent variable.

In the list below, the various difference operators used
in the laser-fluid computer program are given. For each indepen-
dent variable the grid spacings were taken to be uniform with
sizes denoted by h or k. The great variety of formulae was used
in order to handle the special situations near boundaries.

4“"

A. Center Difference Scheme
= L3¢, -£ )-3.(£, - 1 e
9 \2 1 I3 3 1 5
{3?}7o4fi’172['i‘fi+1+fi-1)'ﬁ‘fnz*fi-z)*"9E(fi+3+fi_3) e, (B13)
__._.....e...u_—
i

B. Off Center Difference Scheme

1.
3 ol g 43, -2f.. - WLf._ +2f, .-Llg, Bl4
{5}7.411fi’i’ﬁ[ PR TSN S LI e Lo eof1t4] B

: ooooeio
—a e :
upper signs lower signs
) 1 21, .13 107 17 11 3
{5;}7,4;1fi’172 [‘1ofi*’1efi_+_1*" 907171*36Ti+2"1807i%2710%143
4 e 1l g B15
25 114 9of1-.tS] (B15)
—n-n.@.n-l-l-l-n—_ - AA&
1 1
upper signs lower signs
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=+L1_- 77 5 -1 -5 5¢. .1 1
, {3%;}7,4;2&‘3??[ gotit 3%i+1 gfiz1m Sfisot Efisam gfisat 3'6fi15] (B16)
i
_AQ.Q.‘.A.-.-_. —n.n...n..@.o._
i i
upper signs lower signs
9\2 L [_ 7.¢._ 27 7 19 _ 67 9
{ax}7:4¢2fi‘i¥2[ 18f1i” fofin® Tofin® “Tfie2™ T8%143% 5fisa
-1 11
Ffiast Te_o'fi:ts] (B17)
B - e B e T ¥ 1~ W
i

i

upper signs lower signs

C. Mixed Differentiation (Center)

{—ﬁ—}f =L |3(¢ +£ -f £
dxdyf "ij 2hk[2'Ti+1,3+17"i-1,3-1 i

i+l,3° 1-1,j-fi,j+1_fi,j-1)

- 3=(£542,542+E1-2, §-2-F142,5-Fi-2,5-Fi,§427F1, §-2)+

1
*+ 99 €543, 543%Fi-3, 5-3"F543,57Fi-3,5°F1, 5437 F4, 5-3)
49
0P oA d oy
18flj] (B18)
D. Mixed Differentiation (Off Center)
2
_a_}..__;_ll.. 13, .. 107 _ 17, ,
{Bxay £i3="Znx|~ 10Ti3* 18fis1,3%71* “oofizl, 21t J6fiz2, g2
-1l ¢, R . 4 . .= L f, .
180f1;2,3*2 10f1¢3,34:3+ 45f1*4,3:|:4 90f1*5.J=F5
-h2 (9 k2 2 B19
n? (2P, -x2($) fij] (B19)
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2
38_1_75_27 7 1
dxdy fij— 2hk[ 18734 L

9
+ = + ==f
ij 107i4l,3F1 1°fi:|:1,jil 47i+2,532
67 9 1 11
= 18%it3,333% 5%its, 5747 2tits, 505" T80Tite, iz6

-h2 (a%-) 2fij-k2 (a%) 2fij]

(B20)

upper signs lower signs

(Additional points on the axes are to be selected for the

unmixed derivatives)
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APPENDIX C
COMPUTER PROGRAM FOR THE LASER-FLUID EQUATIONS

In this appendix, the computer program for the laser-fluid system
used to obtain the results discussed in Section IV is exhibited. Before
programming, certain simplifications were made in Equations (174)-(186),
based on the fact that a, the linear absorption coefficient, is very

small in air at 10.6 u. For x # 0, Equations (174)-(179) were reduced to:

2 aV aV
3 _ _ )l (1-x) r, (1-x) ] (I-XL P p 5
ot {p[ o T T vr t a2 r vr ax ¥ vz '} (c1) ]
o o |
ot _ 14 [(-x)% 3% (1 -2x) or, 3%
it D{C [‘_2)_ '(_2)_ X ) X ;i]+
a /v, \2 2 av_\ 2]
2nin' 1-x r 1-x 2 'z
g [ (S0 ) B v (59)
o 0
2002 Yz Y |, (1o (¥ 2 (avr)zw '
+%; "o X az 7L(ax) t\iz J+
- / ro
aV 2 3V_ a3V
n' ( l sl=xy 2, (0-x)" "r 2
* Cv vr ax r X vr 3z "o ox a2 ] *

L)/

1oy
+T(Y-])[%%+-“'—")- v 2.4y _.9.] of - (E] +E)}

o r ax Z 32

: -
{LLJ" v 2y %}} (c2)
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) V
AT R o [0 2

2

29 V -V

1-2x\ "r =X (1-x) r
(x )a— '(T'Lfvr_,+(“+“) el ?}

0

2 3E oF
1=x ] ' 2
v {'2' [e (E] ax Ex o )t

oV ov
l " 2 2y 3 R oT r r (C3)
+2€(E]+E2)§%] (Max+vrax)}'v

oF oF
0 1 2 1 w /e2 2y 3p
(E] 3z T B3z )+ 7€' (B + E5) az] (c4)

re" A o
/2 \2
- ['271: e" (g%) + ;L (eo-e)] Ey - ¢ 5% E]} (cs)

~-148-



For x = 0, equations (181) - (186) become:

oV oV
3. [pfr+2 2
ot [p ro 3% T )+ vz az] (c7)
2 2 :
2 2 oV oV
-l 8) G ]
at p{cv ?;‘? 22/ Gy :;2' ax 3z
2
aV av_ v
2n' |(_r) ] 2 _r_z RN E 3p
+Cv [(ax) r_2'+;"2' X z]+T(Y])[at+vz z)z:]+
0 0
aT :
T/—(E]+E2)} le (c8) %
oV
)
2 2
oV ) oV
—2.1) Rr3 2 Z\{_JR 3T a4
at D{FT 3z + (20m') . +"(:'2'ax2)}{ﬁaz+v'zaz}+
0
13 ot ".
1o &, . %\, e 2, 20
*2’[“ (El 7 *Ezaz)“T(E]*Ez)S%] (€10) ]
2 2
f‘..l{ﬁ(l 2,125 i&)
d 3y ?axi 7.2 L oz
N Y % 9 4
[ e" (s%)z ty (eo'E)] E, - ¢ 5% E]} (cn) ;||




3E 2 3% 32E 3E
i A 1) -l ] + ] ] + .2 +
3t e oy \p 22 252 ‘5

(C12)

In this computation the following notations have been introduced into

the computer program:

DX
DY

DIT :

Vi
V2
V3
V4
Vb
vé
V7
V8
V9

V10 :

DU
DV

The number of steps in x (or r) to be remembered.
Total number of steps in x.
The number of steps.in

The number of steps in time.

Ax EZ : Eo

Az KL : KL

At KM : 2KL

X WA : 2n#n'
(1=x)/r, WB : ntn'
('I-x)2/r° WC : n
(1-x)¥r 2 WD : n'
(1-x)*r 2 WE : T(y-1)
1/x SF : -RT/M
1/x2 we : 1r
(l-x»&bx SH : 2/r°2
(1-x)3(1-2x)/qfx WL : o,
(1-x)2/r°2x2 W o
1/8x WK eo-l
1/(ax)? W /2

WP

WR

5

WU
Wv
W
WX

WZ
VA

)

3(e°-1)
c2/wL
czlauL
I/ZwL
Ro/M
x/C
2
(2n#n*)/C,
ac/2C,

1/2
1/r
2/r
n/C,
2n'/C,
1

v

0

0



W : 1/az L (eo+2)po VO : 273
0z : 1/(az)? W : 3(e +2)(eym1) W o: 3
0T : 1/72(ax)(az) W 2n/r°2 VE : (y-1)
H 1/[(e°+2)po-(eo-1)p] H2 : (;o-l) H
. . de . [
H3 : ¢ H4 dp HE d—p?
H6 : 1/p ' H7 : /e
H8 : /& H9 : (eo-e)
X(1,K,L): E, X(2,K,L): E, X(3,K,L): p
X(4,K,L): T X(5,K,L): Vp X(6,K,L): V,
FXA,FXB,FXC: & SXA, SXB, SXC: 2 SZA,SZB, SZC: o
ax e 2
FZA,FZB,F2C: 2 MDA, MDB ,MDC: 2
pTETTEL 22z STEPWLES  axXdz

Following is the computer program for this study.
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(NOUNUDERFLOW) S OPT)KSE PRUOCEDURE OPTIONS (MA)IN)
NN=23; M=yl; MT=1005 N=16f MIT=1003 2HN=NNi; IZNaNi IMT=MT;
OCL (LY oSLUT)oS20T)eS3(T) oS4l T)ySH(T)4SOLT)) LABELS
DCL (EZ DN, VEeVFe CHGy L1400l

DXoOU LDV oDY o UHDZ DT 4017 qUA UL OC ¢UV 0L OF 3 0GOHy 0) ¢ USoOL 9 OM o ONy 00, 0P 0Q,
OKeOP ¢ WB oW W1D oW1l ol 2¢HW13 W14 PHYTGL(L21),
XReOSoNITqOULOVOF ¢ UXs0Y ¢DZePAPMPCoPLIPEPFyPGoPHy PN,y
WA WU o HC ¢ RO ¢ WE o WF ¢ Gy Wil g Wl g W ¢ WK o WL y WMo N g WU WP o WiJ g WH
Hs'“!'NU|NV'HH'HX.NY.HZ.HI.HZ'H"HQQH5'N6'N7'Vﬂ'HAQHﬂ'"D.“E.“F'”N.“S'“lQ“ZQHJQ
HaoeltD o T HB o H s Vg VI ¢ VIH VO VP ¢ V1 g V2 o V3 V4 o VH ¢ VO, VT VB VI, V10 Fl 2,
KLoKMg X1 X29X3¢ X4 9XD X0 o XT XU ¢XDgXL0 ¢t 29 3 oFboF5,FO¢FTeFByFIFL04FLL14AL6)BlO),
ClO)eDL) oL U6) s FLO) e X(0s160121)eY(Go164121)) HBINARY FLOAY (53); .
DCL (FXCoSXCoFXAoSXAQFXDoSXBoHMUL ¢ MDA ¢MUUBFF oFFL1) RETURNS (OINARY FLOATY (53))3
EP=]l.L3;F 1J=100% 23J=)y7 CHOG=l.; IC=1}
NA=N-1; Ni=N=-27 NC=N-3; NO=N-4; N5=N-%; NF=N-6] N7=N~7; NNA=NN-13}
MAzM=]1; [(B=M=2; MC=M-3] HO=M=4; ME=M=5; HF=M=0; MG=M-T; IMA=MA}
LU=NNA; UX=)./DU% DV=DUSOU; OY=3.6L6/7LMA} OUW=IMA/3.6C65 OD2=0W*0W;
OT=,5%0U»DW; OLlT=1,0=5/2MT; OP=]le/18e; KLESURT(Lle¢5.656-4)%5.91E3; KM=2,#KL}
UA’.’S; lll}l--ISR UC"."DC.‘, UD-I.SS' Ul;-l./‘)o.: UF"""./IU.: OG.-ZQI‘
DH=13.,/18.% olllu7o,9l‘o‘ UJ.I70/3\'DQ‘ UK==~1.1%DP} Ol.z=¢ 3} DM.I|.,‘05.‘
ON==DL} Ul==T./184; OP==2,7; 0UQ=.7; XR=4 .73 0USz=07./18s1 UU==-,5}
Ov==0K; OW=]l,5%003 OT=1.8; OX=4,/3.7 O0OY¥==,4; 0Ul=2.%0C;
PA=l,5*UV; PCa=TT./0604% PU=2.5% PE==14/64} PF==5¢/343%
FO=- STl Viim-elbi Fli==UX*0A; 1'i==0VeDY;

WA=3,5%E-47 WUl TT5E-4F HWC=WH] WV=2,3}
VP=3,; HD=0.3 VE=e4 § WIEle25C=3F WIl ¢H,0%E=47 HWK=5,65E~43
WlEHel=-37 WUBHZI®WI; WH=22,%AnG; WLE 0865145 VF==-8.3144L7/29.012;

WHE(WIEWNVIENT;  WH=VPYaKeHK: WOsWE®RHE  WP=] 69%E=3F WQ=9.Ea/l.T773;
WR2 580 dS=2,5/71.T773€14%F WT==VF; WU=, LBO*KW) §
WWaWA/T.1438565F WX=9,E=-3/1,42080; WY=,5; VA=z2,%Wl;
Vi=WC/Te14306% VI=C0o: VH=l.§ VU=283.%
Hl==DVel34,89/18.; W2aDV*12,§ d3=z-DV9T,.5; nH4=OV#40./9e% HWS5==-0V*1.875;
Wo=(\W*,48; al==-0VeDP;
H820U/(44) . #1BC*UX): HWI=l0B80.*h0; HWICr=0T75.%HEG; WIl1=400.%NW8}
W12==108. TH5*hB; W13243,2%W8; Wla=~5,%WU; WB=~6Th 05"kl RT?
£22(2.L2/701e42,82€=4))08,5/3%C0;
00 K=1 TO N;i 00 L=]1 YO M; 2K=K; ZLuLi UNz(IZK-VN)/DVU}
KO gKoL)=CZ*EXP(=(wVEDN/(Lle=DUH))**2=( 102 ~3,0)*%2);
X(E2eKol)=2003 X(3oKoeb)zH)3 X(44KoL)2V0P X(59KeL)=20e3 X(6¢KoL)=043%
ENDE  ENL3 . .
DO L=M TU 1 BY =13 PUT FILE (SYSPRINT) EDIT (Le(KeX(19KelL) DO K=1 YO NA))
(SKIPU2) g X(4) oF(3) qu(SKIPSIXIY) 4F(2) s XU2)eElL&yT7))))§ ENUL;
FXCS: PRIDC (X1eX2eX3eXGeX5¢X0) OIKARY FLUAT (53);
DCL (X19X2¢X3¢XK%9X5¢Xt) BINARY FLOAT (53)3
F2=0A* (X1=X2)+0D* I X3-X& )¢+0OC*(X5=-X6)3F RETURN (F2)i END FXCs
SXC: PRUOC (X19X29X3eX4eX5eXeXT3 BINARY FLOAT (53)
DCL (X1 eX2¢X3¢XbyXH¢X09XT) IHARY FLUAT (53)3
F3=UD&(X24¢X3)400% [ X4¢X5)¢OES( XO+XT )+OF*X1; HKRETURN (F3)3 CEND SXC3
FXAS PROL (X1 ¢X2¢X3eX4eX5¢X6eXT) UBINARY FLOAT (53): DCL (X1 ¢X29X39X%sX5¢X6¢X7)
BINARY ELOUAY (53); Faml'C*X14POVX24PERXIePI¢X4ePGrXS ¢PHEX6¢02#XT; RETURN (F4ais
END FXA$ ’
SXAS PRUC (X1 ¢X29X3¢XG9X59X69XToX8) BINARY FLOAT (53); DCL (X1¢X2¢X3¢4X%eX5¢ X6,
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X79X8) UINARY FLOAT (93): F5=200%X140P*X240Q%X3¢XREX44US*X5¢0T*X640USXT+UVEXD)
RETUKN (+5); END SXas
FAB: PRUL (X1 oX2eX34X4yXD¢X0, XT) BINARY FLUAY (53)5 DCL (X)oX2¢X39X4¢X5,X69X7)
BINARY FLUAT (53)) Fo=sONeX]1¢0X®X2+0Y*X3¢UURX4¢02%X5¢PARX6-0CtXT; RLETURN (F6))
END XN :
SXB: PROC (X19X29X3sX09X5¢X0sXT¢X8) BINARY FLOAT (53)5 DCL (X1eX2:X39X%¢X5 X0,
XTeXB) BINARY FLHAT (53); FT=006%X1¢0H*X2¢0[%X34¢0J*X4-UKEXS+UL*X6+0MEXT+UNX0}
REVURN (F7); END SXB3
MDCS: PRUOUC (X1 9X20X39 X%y X5 XO 9 XT ¢ X8, X9) BINARY FLOAT (53)3
DCL (X1 g X29X3 X0 XY o X0 XT X8y X9) BINARY FLOAT (53);
FO=sDE®X e ) X24X3 ) eUBR(XA¢ XS )¢DE* (X6 4 XT ) ePMEXB¢PN*X9s RETURN (FD); END MDC3
MDA PRUC (X1 9X20X39Xa X590 XO0 ¢ XT o X8 X9y X10) BINARY FLOAT (5315 OCL (X14X2¢X3¢X4,y
X5eX0 o XT XS X9 XL0) BIAARY FLUAT (53) 5 FYzD0X]1 +0P#X2+0UQ* X3¢ XREXG+USEX540T* X6+
QUEXTIOVe XN+ PR X9¢Phiv X105 RETURN (F9) i END MDA;
MOBS PROC (X1 9X2eX3eX4s XD X0 XT o XBeXSeX)CU) BINARY FLOAT )53) 5 DCL (X19X2¢X3 X4y
X59X0 o XT o XE9 X9 X10) BINARY FLOAT (53)3 FLlO=0GeX]1¢UH®X2¢0]1#X3+0JX440K*X5+0L*X6¢
OMeX T +(*Y3ePHE X9 PH2X10; RLTURN (F10)) END MDB:
FF: PROC (X2 oX29K39X49X5¢X0eX7) BINARY FLOAT (53);
DCL (X1 eX29X3 90Xy X5 X649 XT) BLHARY FLUAT (52);
FLISW)EXL¢HEE X2 ¢3RNt RAU X4t SeXS¢HOEXOtWI®XT) RETURN (Fll)s CND FF;
FlEY: PRUOC (X19X29K39X49X54X09 XT) BLIHARY I-LOAT (53);
NCL (XD g X2eX3oXbyX99X692XT) BIRARY FLUATY (53);
FL12saREXLAWYGFXIEHICEXIINLLIXG¢n)2¢X5¢ ] 38XO+WL42XTRETURN (F12); END FFL;
DU D=1 TU MYT;)F JD > 1 THEN DO)
1F 10519 THEN DODLIT=9,L(-83% 22=23,L3%(21J0=-1.)%DH;2T=1D=-1J¢); CHG=0.5; ENDS
ELSE Dy 245063 213)D§  ENDG

DO K=1 TU N;j IK=¥K; DN=)2K-VN)/DU;
DO L=1l,H; 2L=L3
X{LoK gL )=C2Z®EXP(=(WVEDN/(1oe=UN) ) #92=( o 10%(LL=30:=22=3,FE3%(2T~1,)*CHG*DK) )*%2))
LND;  END;
DU L=2 TU MA§ 2L=L: NN=(ZM=VN)}/DVY;
XCLeNgLI=E?EYP(=IRVEDL/(1a=DON) )80 2=(, 10%(2L=30,=22=3.FE3%(2T=) o )*CHG*DH))*%2))
CHDs RO ELSE)
00 L=2 TD M-13 0D K=) TO N=13 IK=K} DO J=1 TO 65 A(JI=X(J.Kel); END;
NTswP*A(3) s HI=VI/IWM-WKEA(3) ) s H2=WKEHI13 HIsVNEMT®IL;  He=wN#lIL1*H]§
HNY=WV#I49H2E HT=Vh-NT/ )WMe ], 13UE-3%A(3) )}
HB=1)3900,5;5  NY=WK* (3.4 hK)¥)wl=-A(3) )en];
IF K > 3 ThtN 003
Vis(Zh=VN)/PU; V2x)VN=V1)enWl; V3=V24(VN=V]1); V4=V3i®V2; Vi=V3sy3;
VosLU/ ) 2K=VYN)} VIaVOrVOiVOsWI®(INN=L¢K)/ (IK-VN)§ VI=Va4¥(V6=-WV); VICaVB4VE;

JF K € NC THEN DU; KA=K+]l; K@A=K-1) KC=K+2;
KDzKh=-2:KIl.=K+3; KFzK-3%3 DD J=1 10 63
DCII=EXCYXCI o RA L ) o XCOaRB 4 ) o XCJoKC oL ) o XIJoKO oL ) o XCJoKE oLV o X (I o KF o L)) *DU;G |
ClII=SKLDACI) o XCI o KAQL ) o X{JoRD oL ) o XCIoKC oL ) o XEJo KD gl ) o XCJoKE L) o X(JgKFoL))*DVS

END: )F K > 7 THEN LX=7) ELSE LX=6; END;

ELSE OUs )P K=NA THEN DOLY%=53 D0 J=1 (O 63 BII==FXAIALI) o XD dglid gl D)o XU o tigL )y
XCIeNCoL D)o X2 oWl gl b o XD oltel ) o X Dol 3 )%DUS  CHrID=SXAIACY) o XD JoNB L) o XCJdollel ),
KOJoRC ol ) o XCI G NDoL ) o XDPJ o NS oL ) o XPI o NF oL ) o K(JoNT L) )*DV; END; END;  ELSE DO
LXshs PO J=) 10 63 BY2==FXBIAII) o XD I g liC L) o XCJgNAQL ) o X{JoNO L) 4R D JeNy )y
XCGJeHDeLl )y XCJIehl gL eDU; CHII=SXUIAII) g XCIoHC oL ) o XCJoNAQL ) o XCD oD gL ) o5 (Jgle L)
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o I
X(J.NJ'L"X(Joerli'X(J!N7oLl)‘DV. END; END; END: ENU; ELSE DO;

lF K=l THEN DOG LX=L300 J=1 TO 4oGib(J)=0,3 CUOII=FFLAGI) o XTJ920L) o X(Jg3eL),
XOJebol) o XUIo5iL) o X(Jsb ol ) oX(JeTol))iENDS
BUSI=FFLIALS) oXUS424L), X{He3 gl ) o XUS594oL) o XUS¢54L) o XU5,64L)¢X{5,74L));
C(H)=2.%8(5): END; FELSL DUS
Vi=(ZK=VYN)/DU; V2=(VN=V))*Wl; V3=V2¢(VN-V1)i V4=V3®V2; V5=V3eV33 )
VOo=0DU/Z(ZK=-VN); VI=VosVoiVi=nw2e(ZNN=-LK)/L2ZR=-VN){ VI=V4ex(V6~-UV){ V10=VESVE;

IF K=2 THEN DU3 LX=2% 00 J=1 TO 6381 I=FXACAL Y o XTJde3el ) oX{Jol o) ¢ X(Jr4oL),
XEJeSol) o XCJobo L) ¢ XUJyT oL ))*DU; C(J,=SXA(A(J,|X(J|3'L,'X(J.I'L).xtﬁgﬁltiv
X{JoSoL) o X{JgOoL) o XUIgT oL ) e X{Je8oL))%DV; END; END; ELSE DU LX=3;
OB J=) T o BRI =FXBIATI) o XUJ g4l ) o XUJg2 o) o X{IeSoL)aX el al)eX(Je6:L)e
X{JeToL))=bU; COII=SXPBUALI) oX(Joao L) 02X Je2sL) oeXUJe5,L), XlJvllL"x(J'6lL"
XCJoT o) e XUJpBoLV)2DV; LNU; ENO; CHD; ENDG > .
JF L > 3 THEM 003 IF L <= MC THEN
DU LA=L+1l; Lh=l=]; LC=L+2; LD=L=¢; )5=L¢3; LF=L-3; 00 J=1 TO 6
DUSI=EXCUIXII Ko LA) o XUJoRoLBD o XUJpKolC) o XUJoKolD) o XU JoKoLS) e XUJoKoLF) ) %DW;

E(J)=

SXCULA(J) o X(J,y K.LA)'X(J'K'LU"X(J'K'LC'.X(JvK'LD,'X(J'K'Lb"X(J'K LF))*DZ; END:
1F L > 7T Tk DU;
. GO TO SL(LX); S1(1)2 LY=SA; GO TO SR; S1(2): LY=SS4; GO TO
SRy S1(3): LY=SSS3 GO TO SR; Sl(a): Lv=SS7; GU TU SP; SL(H): LY=SS63G0 TO SK;
S106) 2 LY=SS1: GO TO SRy SL(7): LY=5S1; SR: LKDs ELSE 0U; GO TO S2(LXx);

$2(1)z LY=SA; GO YO 50: S2(2): LY=8S52; O TU SUus S2(3): LY=S5S3; GO TO Su;
S$2(4): LY=S559; GU TO SQ; S2(5)3 LY=8S8;: GU TU SQ; S2(6): LY=8Sl;: GO VO SQ;
S28T) e L¥-S8): E£Q: Lhiy LhD: ELSL VUG IF L=k il DO, 00 J=i Tu o}
DUJ)==FXACALI) o XU Ko BB o XU I oK oMY o XTI X g MC) o XTI oK g MDD o XTI g Ko ME) o X LI oK g MF) ) %0M;

ELJIoSXACALI) s XUJoKoMB) o XEJ oK oM) o X( oK oMChH o XU o KoMDY o XTI oK g ME) o XTI 9K MF) ¢
X8Ik MG) )DL G
END: GO TO S3(LX); S3(1): LY=SA; GO 10 SO; S3ale): LY=SS4; GO TO SO; S$3(3):
LY=SS4; GO TU SU; S$3(4): LY=SS63 GO TG SO; S3(5): LY=SSe: GO 10 SO; S$3(6):
LY=S54; GO TO SU3 S$3(71: LY=SS6; SuU: ENDS ELSE OU: 00 J=1 TO 6;
DUI)o=FEXBLACI) o XTI KoMCYy XUJoKoMA) o XU K oMD) o X(Jo Ko M) 9 XTI oK oHE ) o X Iy Ko MF) ) %DN}

ECJ)2SXOBIALI) o X(JoKoeMC) ) X(JoKoMA) o XTI K oMD) o X{JgKol) o XTSgKyMED) ¢ X(JgKo1F)
X{J ok oMG)) D2 END3 GU TO S4(LX); Sall): LY=SA; GO TU SM; S4a(2): LY=SS4;
G0 TU SH;:;Sa(3): LY=SS5: GO TO SM3 Sa(4): LY=8S57: GO TO SM;Sat5): LY=SS6: GO

TO SM; S6l6): LY=SSS: GU TU SM; S&(T7): LY=SST?T; SM: END; ENO; END; ELSE DU;

1F L=2 THEN U0O0; DU J=1 TOD 63
DUJIIEFXALACI) o X I eKo3) o XT{JoKodld o XUJoKo@) o XUJoKo5) o XUIeR9p6 9 XTUJglgT) V2D
ECII=SXALALID) o XCJoK o3 ) o XTUoKol) o X{Jp Kot ) o XTJoK o5} o XU oKo6) o XU oK gT) o X(JyKy8))2D
2 3 ENO; GU TO SSULX); S5(1)z2 LY=SA; GO TU SKi: S5(2): LY=8S2; GO TO SK; $5(3):
LY=SS2: GO YO SK§ S%(4): LY=$S58; GU TU SK; SH(Y%): LY=SS8; GO TU SK; SS5(6):
LY=$S82; GO TD SK; $5(7)¢ LY=SS88; SK: LHND; ELSE 00; 00 J=]1 TO 6;
DUJI=FXBLACI) o XU oK 34 ) o XUJoKe2) o XTJgKoH) o X(JoKod) o X(JoKoO) o X{JeKeT) )2DH;
ECII=SXBUALI) o X(Johot ) o X(J9Ke2) 2 X(Jo K'S,'X(J'K'l,lx(J|K|6"x'JIK|7"le'K'a,'.D
2 3 END; GO TO Se(LX):

s6(1): LY=SA; GO TO S); Sblz" LY=552; GO TO S1; S6(3): LY=8$3: GO TO S1;
$6(4)s LY=SS9; GU TO S);. Selb): LY=$S8; GU VU S); Se6le6): LY=$53; GO TO S1%
S6{T7)s LY=$59;F S1: LND; ENO; GO TO LY;SS1: 00 J=5 TU 63

FUII=MUCCALY) o XUJoKAGLAD o XUJoKBoLB) ¢ X(JoKCoLC) o X(J,y KD.LO).X(J.KE.LS).X(J KF oLF)
tCLI)¢ELI)I*DT; END: GO YO SB.. §82: DO J=5 TD 6;
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FUII=HDACAGYY o X(I oKL gL 42 ) o XUIsK=1ol=1) 1 XUJoKe29L #2) 4 X{JeK+3,L+3) ¢X(JoKea L +4),
K(JoRtSgL#5) g KIJ4Ke6,L+06),C(I ), L(I)I1%DT; END: GO TO Su83 SS3: 00 J=5 10 63
F(J)=HDMA(J).X(J.le.L*H.X(J.K—I.L-H.X(J.KQ.L#Z)pX(J.K-Z.L-ZI.X(J.K*~3.L03).
K(J Rt L4a) s XEIsKaS5,L+5) 2L (D) LI} )*DT3 END3 GO TD SB; SS4: DO J=5 TO o3
F(JI"’MOA(A(J) XEJoRALpL=1) o XCUeK=1 oLt ) ) o X{I 9 K$29L=2) g X{J9K+39L=3)9X(J, K”"L 4)

X(J.K01yL 5)aXEJsR40,L=6)4C(J) oE(I)*¥0T5 ERD3 GO TO SB; SS5: DO J=% 10 0} .
FUIY==HUBLALJI) s XUIqKelyL=1) o X (DK Lol 4l ) e X{JoKE29L=2) s X(J1K=24L¢2) ¢ X(JyK#3,L=3)

-9
XEJ1K+4,L~a) o XUIyKeS,yL=5),CLI)4E1I)IIRDT; ENO; GO TO SB: $56¢ DO J=5 T0 63

FUIV=HOACACI) X (I oK=L oL=b ) o XUJ oK Lol 41D (XTI 1K=21L=2) ¢X(I9K=3¢L=3) g X(JyK=tgl=b)y-

KOS g K=54L=5) s XU Iy K=04L~6") ,CLI),ELS)I¥OTS LNO; GO TO SB; $ST: DO J=5 TN 6; ,

FOII=MOBCACY) o X (I e KL g Ll=0 ) o XCI oKt oL 42 ) o X0 JgK=29L~2) o X (J9E#24L+2) 9X(JoK=3,0L=-3),
XEI K=ty L=4)uXUJ o K=54L=-5),C(J )4 L{IN)*0T; EMD: GO TO S8 $S8: DO J=5% TD 6; )
'F(J)=-M’.)‘\(A(U,IX(J'K°IIL"I,'X(UQK’I'L"I,QX(J'K-ZIL‘Z,'.X(J'K-BQL’?,"x(J'.K'I"'L."f,

)
KEIIK=5yL45) s XUIy K=04L40) yCLI )4 E(I)IXOTS ERD GO TO SB3 SS9 DO 4=% TO 03
(-(J)=-H)N!(A(J).X(J.K-I.L+H-X(J.K*I.L-'l).xi(u.K-Z.LtZ).X(J-.K+2.L°2).X(J.K'—’_‘--.L'OB')

B
KCIaK=4yL+a) o XUI K=59L45),CLI ) ECINI*DT5 BN GO TO SBY
SN HA=ALO)}#0(3); HB=ACL)2AINCA(2)*ALLNE Y3 Ky L) == (HA+A(3)*(D(6IVARB(5)))
HO=IHL Y (3 KoL DY (A Ko L'} 3 HF=HARY (34K L5 'HH=WSHHD+WL*¥H9;
WE=VE®A(4 ) WF=VI®Ala);
Y4 sKoL)=(AUT (A C LAY +E(4 ) ) eRWH(0(0) %D(6 ) +HHAB(S) 2B (5) I+ VI (REED( 5B 5)
SHHEB(S)2DI6) b kb (Y 3,KoL) WHA ) W XSHBSHY ) /A3 )
=ALG)#D(a); Y5, Keh)=0,3 _ ]
Y6 oK L) (WFEDE3)4HARL (6 ) +WORCLO) ) ZAL3)=THTHD(4) AV GI#D(6) ) WY = (Hax (A (1) *D (1)
TAL21EN(2) )+ UYHHERHBYD(3) )5 ,
YLt L)=HT# (RQe (G0 (2 V4WY*E (2)=KLAD( 1) )=HH®A(2)~HF *A( 1)1}
V(2 Ko LD EHTR (=00 (WG CHL D4WYSEC) D 4KL#D(2) D4 HIRACL ) =HF*A(2) 560 TO SC3
SBI HS=VI*A(H ) HASHSYB(3)4A(6)X0(3)s BE~A(LD=A(L)+A(2)%A(2); HE=NYHHBAH5;
Y(3,Koh)m=(A()#(VIXB(S)4VERA(S)4D(0))4MAD; HE=HA*Y (39Ky L) 3
HD=HS &Y (39 KoL) ¥¥ (33 KoL )5 HHWS*HDEHLEHY
WE=VEXA(4)T Wi =VI%hl4);
Y04 KoL)z (U (VS%( . )4V IEB(4)I4EL4) IENRE(VSHB(S)AB(5)+VIOYA(LI*A(%)+D(6):D(6))
SYHRRVAVISR(6) %08 4 J4VL*BLO) cHIO)I+DISR%0(S5) ) 4V (VER{HS*D(5) +A{ 5) 2N (b))
+V3RBIS)¥DI0) behl ¥ LY (3 Ky L) +HAY +hX*HBEHB I /A3 )= (1S B (D) +AL6)%0{4) )¢
YOS o Ko L)= CALRE(HI1VEr (B F(6) dWF5H(3) WA (VSRCI5I%VI*B(5)~VI0*A(5) 1)/ A(3)
VIS (UYS (HAR (ALY S5 TLD#AT2)*BL2) V4HERBLA) D= (HTHBL4A)IALS)BI5)) ) -AL6Y+D{5)}
YOO, KoL) CiFAD(3IIBR(VIEE (S )4VERDIS DI04 10 ) J4uC¥ (VSeC (61 4VI4 B 6)¥E(O) ) ITALS) -
“(WTED(4)+H3%0BL6) +ACOISDIG) I+ nY = (HA*CATL ) 2D L) +AL2)20(2) 0 +MLED(3) )3
Y{1KoL) .
sHI# (WR*¥{VL¥C(2)+VOER(2) 46 (2)-KM*0(1) ) =HH*A(2)~HF*A(1) )}

YO R L )ZHT#(~wRA(VESC () 4VORBIL) R 0L ) SKIKOY2) D +HHEALLA~HF A2 )5
SC: CRD; END; DD L=2 TIH M=13 UV K=1 TUO N-13 DO J=) TU @}
X(JaKol)=X{J o KoL) +V (I Ko L)%DLIT3 ENDS ENDG ENDG

18 1U=20 VHEN GO TO-LS$; ELSE

1F I1D=40 THLN GO T0 LS; {LSE

{F JUu=60 THER GU TO LS: CLSE

If 1D=80 THEN GU TO LS} LLSE

w]155=




IF 1D=MTT THEN GO TO LS: ELSE GO TO RR;
LS: DO L=M TO 1 BY =15 DO K=) TO NA; YI3oKeL)sX{3¢KoL}=WI§ YI4yKel)>

X14yKoL)=VO; DO J=1,92¢5967 YIS KeL)2X(JeKyL)i ENDF  END; END;
0O J=1 T 6;
PUT FILL (SYSPRINT) PAGE?DO L=M TO | EY =13 PUT FILE ISYSPRINT) E
DIT HIDoJyLolKeYIJpKoL) U K2l TO HAD) (SKIP(2) 331K14)9F(3)),4ISKIP+SIXIY)FI2)
1 X(2)4E1149T))) D)5 ENDS  END:
PUT FILE ISYSPRINT) PAGES
6120, DO L=M TUO ] LY -1i DO K=) TO N; (K=K; VI=(IK=-1.)*DX;
V1=V1/(VN-V])#%3;
YEL oK o) =XT 1l g KoL) XTIl o KoL )¢ X(2, KoL )®X{2e KoL) YIZ2oKoL)=VI*YI]1,KeL)}3 END;
DO K=1 TO N-2 BY 23
GLIL)=GLIL)¢YI2oKoL) ¢4 wYI2 ) Kel gL )eY(29Ke24L)5 END3
Gl(L)=3,141593E1C/WG*G1{L)*DX;
END; DO L=zM TU 1 LY =1; PWT=0e3 DO LL=L TO M-2 BY 25 PWI=PHT4GLILL)
F4GLILL#L)¢GLILL42): ENDGIF LLKM=2 THEN PWI=PHT+.5%1 GlIli-1)¢G1IM));
PHT=DY#PHWT/3e; DO K=1-TU NA; YILloKoL)=SQRT(YIL K,L))IZEND;

PUT FILE (SYSPRINY) L
DIV LIDeJyLoIKeYIL KoL) DO K=1 TO NA)) (SKIP(2)e3IX14)oF(3))oalSKEPoSIXIL)FL2)
1 X(2) e ELLG, 7)) D)
PUT FILE ISYSPRINT) EDIT IGL(L)oPwY) (SKIP,2IXI2),FEI14,7))); END;
JRR: ENUS JF IC=1 THEN DU; 1C=0; EP23.C3; 1J=100;5 Z1J=1J; CiHG=1,3¢
DIT=].C-7;
GO JO RT; END; END

-156-



-




ILLUSTRATIONS

Figure 1. Fore and Aft Symmetry of the Laser Pulse.
The on-axis magnitude of the electric fizld, |E\, is shown as a
function of |z - zc| at four different times. As shown in Eq. (200),
z msct locates the center of the pulse. The solid curves show the lead-
ing edge of the pulse and the dotted curves depict the trailing edge. Dis-
tances along the z-axis are expressed in units of the grid size: Az = 0.45km.
The quantity |E\ shown is defined in Eq. (197), so that the exponential

damping factor is not included in the graphs.

Figure 2. Details of the z-profile of the Electric Field.

For detailed comparison, the z-profile of the on-axis electric field, |E|,

is shown at several times. The unit Az is used for distances along the
z-axis. The curves have been displaced to the left and the leading edges

made to coincide at height 1000 E% t for \E\ . The abscissa for this
cm

intersection of the curves has been labeled 42.5, the location of this point

at t=0.

Figure 3. Radial Profiles of the Laser Pulse.
The radial profile of |E| is shown for t =0 and for t = lo'ssec for

slices taken through the on-axis maximum, Zps in the z-profile.

Figure 4. Details of the Radial Profile of the Laser Pulse.

Details of the radial profile are shown for various times. In all four cases

the radial slice through the on-axis maximum of the z-profile is exhibited.
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Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Off -axis Maximum in Laser Pulse.

An off-axis maximum in the radial profile is shown at t = lo-ssec. The
elice shown exhibits the radial profile at z = 31, whereas the principal
peak of the pulse is on-axis at z = 35.3. The slice at z = 31 contains

the greatest off-axis effect and, therefore, locates the two secondary peaks
which have developed in the pulse. These secondary peaks are also indi-

cated on Figure 9.

Phase of the Electric Field Amplitude.
Phase information is presented by showing |E1| as a function of z at
6

t=6x10 "sec. For comparison, the dashed curve shows |E|. Equa-
tions (162 ) and (197 ) of the text define |E1| and |E|.

Phase of the Electric Field Amplitude.

At t = 8 x 10'63ec. » |E1| and |E| are shown on-axis as functions of z.

Two nodes have developed and E1 is negative in the region of the power
peak. The sign of E1 in the various regions is indicated on the figure.

The nodes are also shown in Figure 9.

Phase of the Electric Field Amplitude.
At t=10"°

The sign of El is indicated in the various regions. There are now four

sec., |E1| and |F| are shown on-axis as functions of z.

nodes. The nodal curves are phase fronts and are shown in detail in

Figure 9.

Configuration of the Laser Pulse.

Various properties of the pulse are shown in the rz-plane. The loca-

tion of the peak in the z-profile is shown as a function of r att = 0 and at
t = lo-ssec. The phase fronts with El =0 are shown at t = 10'55ec. The
open circles locate the z-profile nodes of El-at t=8x 10'6sec. The

small squares locate the secondary maxima of the pulse at t = lO’ssec.
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Figure 10. On-axis Temperature Distribution.

The on-axis temperature increment, (T - To)’ is shown as a function of

zat t = lo-ssec.

Figure 11. Radial Temperature Profile.

The radial profile of the temperature increment is shown at t = lO’ssec.
for the slice through the maximum of the z-profile. This maximum is at

z = 33 as may be seen in Figure 10.

Figure 12. Fluid Velocity Distribution, On-axis.

The z-coniponent, v'z. of the fluid velocity is shown on-axis as a function
ofzat t = lO'Ssec. A double log plot is used which omits values of v,

between 10'3cm/sec and -10'3cm/sgc.

Figr.re 13. Radial Fluid Velocity Distribution.

The radial component, Vo of the fluid velocity is shown as a function of

ratt-= lo'ssec. The slice is taken at z = 32, the location of the ''center

of velocity'' shown in Figure 12.

Figure 14. Fluid Density Distribution, On-aicis.

The on-axis fluid density decrement, -(p-po), is shown as a function of

zatt= lo'ssec.

Figure 15. Radial Fluid Density Distribution.
The radial density distribution is exhibited as a functionof r at t = lO'Ssec.

The slice is taken at z = 32, the location of the density minimum detailed
in Figure 14. A double log plot is used which omits values between

10"’-5""—3 and -10"7
cm cm

Figure 16. Parade of Laser and Fluid Pulses, On-axis.

On a double log plot, the various laser and fluid variables are simultaneously
plotted versus z at t = lo'ssec so that the spatial location of the various

pulses can be visualized.
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Figure 17. Locations and Widths of Laser and Fluid Pulses.
The location and full -le--widths of the various laser and fluid pulses are

shown versus z. The peak to valley distance is shown for v, The initial

and final locations of the laser power peak are also indicated.

Figure 18. Self-curving Effect of a Laser Beam in the Presence of a Wird,

The self-curving effect of a laser beam in the presence of a wind is in -

dicated. The angle ¥, the deflection angle, increases with z. The density,

permittivity, or index of refraction profile is sketched to indicate the cause

of the curving.

Figure 19. Thermal Blooming of a Laser Beam.
The thermal blooming of a laser beam in the absence of wind is indicated.

The angle 'B’ the deflection angle of the outer edge of the beam, increases
with z. The density, permittivity, or index of refraction profile is

sketched to indicate the cause of the blooming.

Figure 20. Cross-section for Scattering into Various Curvatures.

The normalized cross-section for scattering of power into various curva-

tures is sketched for small wind speeds, \ = 0,1,3. The distribution ex-

tends from ¢ /gB to gmax/gB for each \. Already at \ = 3, the disa-

min
tribution is sharply peaked at & = gmax. All the curves must pass

through the vertical axis at height 0.5 and have an asymptote at g/gB =2,

Figure 21. Effective Optical Elements for Blooming.
The effects of a wind on the beam are indicated. When )\ = 0, pure ther-

mal blooming occurs; the light rays bend as if passing through a symmetrical
double concave lens at each point in the path. For )\ # 0 the effective lens
is converted into a large prism with a small defocusing lens perched on

the downwind vertex of the prism.
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Figure 22.

Figure 23,

Peak Displacement at Detector for Experiment of Smith and Gebhardt.

For the experiment described in the text, the beam is viewed with a detec-
tor located 20cm from the end of a 100cm wind tunnel. The peak displace-
ment into the wind, Yp/a. is shown as a function of velocity. The nota-

tion is explained in Part VI of the text.

Intensity Profiles at Detector for Experiment of Smith and Gebhardt.

Intensity profiles predicted by equation (290) of the text are shown at
oL = 0.5 for Vo © 2cm/sec and 10cm/sec. The original beam is also

shown.

-161-



174

01

098

m-

01

saAInd paysep :98pa Burrreay
*saaInd prjos. :a3pd Burpear

as|ng 19seT ay) Jo Lxjewrwig Iy pue aiog °1 2andrg
z
e (W 6% °0 = 27) 5 3 v
]
114 o1 0 o2 o1 0 o2 o1

! |

0=41
_0T1%X9 =13

098 298

9

o O
|
L]

(1)

_0T*8 =3 @Qrn

Lol o

o1

o1



7000

6000 -
-5
— t=10 ~ sec
5000 t = 8x10-6 sec
t = 6x10-6 sec
t=0
/
=y
o™
g
o9 o
\—/
M
3000 -
r=0 ' .
2000 |~
: ] ] ] | J
10 20 30 . 40 | 50
42.5
- (Az = 0. 45 km)
Az R >

Figure 2. Details of the z-profile of the Electric Field



1000

T 100

-

)

erg
cm3

IEI(

10

1 |i T Hl

lllll

I

Figure 3.

)| |

Radial Profiles

of the Laser Pulse

] |

0.4 0.5

= (r =200cm)
r o]

(o]

0.6 0.7 0.8

A miar




6000 —
5000

4000

~la

)

o z=zp
:6‘15 3000 |~
~— '
H
2000 | —
toool— L 1 b 1 LN

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

>

L (r =200cm)
l‘o [o] :

Figure 4. Details of the Radial Profile of the Laser Pulse

=165~



5000 {—

4000

3000

-y

erg
cm3

2000

|E|(

t=10 “sec
z
Az ~ 31
1000 | ] | | |
0 0.2 0.4 0.6 0.8 1.0
= (r = 200cm)
T o ¢ —

Figure 5. Off-Axis Maximum in Laser Pulse

.=166-




]

)

erg
cm3

|E1|(

e
1000 e
-
r
r
100 p—
10 p—
P
-; t= 6x10-6sec
- r=0
. | 1 [ | !
0« 10 20 30 40 50 60
z
Bz {(Az = 0, 45 km) -

Figure 6. Phase of the Electric Field Amplitude



il

)

erg
cm3

IEII(.

1000

T T 7

| lIlllll

100

| l|-l||||

|

10

1 ]Tlll[

t = 8x10" sec

r=0

{ 1 1 ]

Figure 7.

20 30 20 50
é (bz = 0. 45 km) —_—

Phase of the Electric Field Amplitude

60




III

|

1600

L Ill”l

T 100

N

——— -
n el
ok
) S
—'-‘ -
H
10 b—
B t=10"
= r=0
L | jl ] | |
lo 10 20 0 40 50 60

i (&5 = 0. 45 km) S

Figure 8. Phase of the Electric Field Amplitude



98Ing a9se] 9y3 Jo uoneanfyuon ¢ Landrg
e — A - .
(uny g% °0 = zy) L
oF of _ 22
I I )
—s°0
—¥ 0
—€°0
-
—Z°0
—1°0
a /
—O— 0
N
o 4
e |d| ¥o 3o |F| Jo —1-0
yead jediourzg syead Axepuodag
29801 =3 3¢ Iq 3o oasz
) /.
—§°0
\< * —¥-0
298,01 =3 ,uu | 0=133e \
| F| 30 o11302d-3 Jo yeaq | F| 30 31yoad-z jo yeaq i

o.. _1
—-—
L, |

(wrd 002 =



(T-T,)(°K)

r
1000}—v
:
r
100t
1Q—-
= t = lO-Ssec
| =0
_ T =10°C
o
1 1 | | | | |
0 10 20 30 40 50 60
KZ— (8z = 0. 45 km) —

Figure 10. On-Axis Temperature Distribution

-171~-



1000 5\
100 —
-
) LS
2,
“o
=
t
£ 10—
e
— t= lo-ssec
- i
Az 33
1 I N N O W B
0 0.2 0.4 0.6 0.8 1;0 1.2
r
T (ro = 200 cm) —
o
Figure 11. Radial Temperature Profile

-172-




60

1072
n |
- |
|
i |
B !
- "Center of '
Velocity" |
-3 \
10 l | L | l |
-3 10 20 30 40 50
-10 . l .
T I Aiz (8220, 45KM )
e
. 3 5
gl o - t=10 "sec
dg ] r=0
N
> pue——
P
10—
b

Figure 12

Fluid Velocity Distribution On-Axis

-173-



|
]
100 p—
- |
L.
]
10 T
T _
T é
=
—~
(3]
HE .
e’
N
>
1

t ='10-Ssec
z
l\—z— 32
1 I L1 | J
0 0.2 0.4 0,6 0.8 1.0 1.2
- (r .=200cm)
Ty 0 E—

Figure 13, Radial Fluid Velocity Distribution




10

[}
0

) —
—
o

Bm
—

~(p =Py (

10

-10]

t =10-Ssec
r=
10-11 | | | ] i |
) 10 20 30 40 50 60
: - )
A—Z (A0z=0. 45km) ———s
Figure 14, Fluid Density Distribution, On-Axis



10
10'9 | J
-10~° L (r.2200cm) ——
r 0
: 0
N
o
&"e
3]
S’
I~
|
= .8
-10 t=10-53ec
Z =32
Az
_10'7 ‘

Figure 15, Radial Fluid Density Desitribution

-176-




IEl ’ T-TO'_vz ’ '(p'po) ——p

100 ———

10

40

2s (Az‘=0. 45km) —————p

t=10" “sec

-10 r=0

-50 b—u

Figure 16. Parade of Laser and Fluid Pulses, On-Axis

-177-



Power Peak

at t=0 \

/

~

-— s e e o A G -

Power Peak
at t=10"

sec

z
n (Az=0,45km) ———0p

} G i -(p- po) width at half maximum
F—-:—G»—“-H v peak to valley width
I Z
5 ! 3
=10~ | I :
=  —— — (T-To) width at half maximum
' |
' |
|
y o 4 I, width at half maximum
i |
| |
I
C : . 4 |E| width at half maximum
I I
I N .
8 | | I ] l |
.10 20 30 40 50 60 70

Figure 17. Locations and Widths of Laser and Fluid Pulses

, =178~

|
g

R P RN




.k

e = {770

Py, €40

$n

4

Self-curving Effect of a Laser Beam in the Presence of a Wind

Figure 18,

-179-



a

Qe T e By Ten gt Rt
s Ve
I
’ /
../// S 4// /
4 7 ’/ t/://
m«’.'---q.{u.&v/..-éu.«.,,-._'_. s s e

0

v
-
,/'

./“
/

d -
7/

Figure 19, Thermal Blooming of a Laser Beam

-180-




saAan) IV jo a303dwdsy

(=}
TTTTTTT TR

wn
o
]
=] ~< (=]
R
o . ﬂ'. lllllllllll *
~<
/"'lr ||||||||||||||||||||||||||| - e - (Vo]
L 1 _ _ _ l AY °
0 o n © 0} °o 0 W
o o ~ ~ = = &
=
(T3/3)\-2 q n
- \ﬁ = (3)d™ 3 — s
o
.TH--.ll.

-1.5

Cross-section for Scattering into Various Curvatures

Figure 20,

- -181-



Pure Thermal Blooming

e Bom s AT AETT e oan oan can wer an e we S e

No Wind
A=0

Blooming Wind Prism

Wind
Aes3

Figure 21, Effective Optical Elements for Blooming

-182-




nvouv °>
-\ wd/ T

L 8°1 9°1 1 z°1 0°1 8°0 9°0 ¥°0 2°0
i I | T | ] I | T
n b . -—— cams [ -, -— — -—
7
® —a.A
Q
Q =
£
| S—
~ ) $1°0-"IP QO
— €5°0 ="IP X
® 0°'1="1IP YV
8 pIeyqad pue Jruwg jo ejeq
Q
Q
h —
B =y
l
| pIeyqean) pue YIIWS Jo judwtiadxy I03 1030939 Ie juswaderdsiqg Yead °zz 2@andijg ,
L i I 1 1 i | l !
0°2 8°1 9°1 ¥°1 2°1 0°t 8°0 9°0 ¥°0 2°0 |




=5 L)
-aL

Y,=

ILe

10T T r 1 | T
. cm
"o'm sec
0.9} . Original / -
s Beam
v =®
0 \_/'
0.8 : -—
aL = oo 5
°| 7 — -
0.6 ]
oo 5 s * £ --4
0.4 __{
s 1
=
0.2p— /// -
o. ll—- ——"7 R
P i
]
0 11 | | | | | J !
6 5 4 3 2 1 0 v=1 -2
Y
P

WIND DIRECTION

Figure 23. Intensity Profiles at Detector for Experiment of Smith and Gebhardt

~-184-~




UNCLASSIFIED

&cuﬂtx Classification

DOCUMENT CONTROL DATA - R & D ‘I

(Security classilication ol tiile, body ol abstract and lnduln; annotation muat be entered when the overall repori le claseilied)

1. ORIGINATING ACTIVITY (Corporate suthor) 28, REPORT SECURITY CLASSIFICATION

Electronic Sciences Laboratory UNCLASSIFIED
University of Southern California 2b, GROUP
Los Angeles, California 90007

3. REPORT TITLE

INSTABILITIES IN LASER PROPAGATION IN FLUIDS

4. DESCRIFPTIVE NOTES (Type of report and inclusive dates)

Final Report

8. AU THORI(S) (First nams, mtddie iniiiai, iast nams)

William G. Wagner

$. REPORT OATE . 78. TOTAL NO. OF PAGES 7b. NO. OF REFS

October 1970 184 31

1

. PROJEC T NO. USCEE Report 400

CONTRACT OR GRANT NO. [52. ORIGINATOR'S REPORT NUMBER(S)

N00014-67-A-0269-0006

9. OTHER REPORT NO(S) (Any other numbers thai may bs assigned
thls report)

. OISTRIBUTION STATEMENT

This document has been approved for public release and sale; its distribution is
unlimited.

+ SUPPLEMENTARY NOTES 12. SPONSORING MILITARY ACTIVITY

Advanced Research Projects Agency
(DOD) monitored by the Office of Naval
Research, Physics Branch, Wash.,, D.C,

LS

ABSTRACT

In this work instabilities in tho system of equations describing electromagnetic
wave propagation and fluid dynamics are discussed. The basic equations are
discussed imPart’]l, and in-Part-H the linearized stability analysis is presented
along with an evaluation of the threshold for these growing waves. To follow the
growth of the disturbances, computer studies were undertaken. In the course of
these studies it became apparent that there was some merit to introducing a new
concept to judge the value of an algorithm for computing the solutions of a system
of partial differential equations. This concept was called "utility', and is discussedf
in-Part-IIl,- along with several examples of its application to simpler partial differ-
ential equations.The advantage of this concept is that it is relatively easy to apply
to complicated systems of partial differential equations, whereas the stability '
concept leads to a very complicated procedure for deciding on the value of a
numerical routine. In Part IV are‘{_'presentedyrthe results of a calculation of beam
distortion for a very high intensity pulse propagating through air for several
kilometers, ‘Analytical arguments are advanced which suggest that th« qualitative
features of the distortions are correct, which lends credence to the computer output,

Speed and memory size in a computer place certain restrictions on one's ability
to investigate phenomena in the laser beam problem;:In the attempt to calculate
distortions of the type predicted by the linearized instability analysis, cylindrical
symmetry was imposed on the problem in order to facii.'.ie the computer calculatio
Had this not been necessary, or had some other independent variable been eliminate

(continued on next page)

L iy

DD "%V..1473 UNGLASSIFIED

Security Classification



_ UNCLASSIFIED
“Bacurity Classification

LINK A LINK B

LINK €

ROLE wT ROLE

LAJ

POLE wY

Electromagnetic Propagation
High Intensity Beams
Propagation Instabilities

Beam-fed Turbulence

UNCLASSIFIED

Security Classification




13, Abstréct (continued)

rather than the angle about the beam axis, much more pronounced evidence of
beam and fluid instabilities would likely have been observed for substantially
lower powers, powers that may be achievable., Arguments supporting this
proposition are contained in Part V,

Part VI ofthi® report contains an analytic discussion of beam bending and
thermal blooming for a slab beam propagating through a wind. A formula is
derived which provides for the transition between two regimes in which con-
duction and forced convection, respectively, dominate the dissipation of heat
deposited in the medium from the laser beam, This formula appears to be

useful for the analysis of several experiments. -



